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In this paper the method of fundamental solutions (MFS) and the method of particular solution (MPS)
are combined as a one-stage approach to solve the Cauchy problem for Poisson’s equation. The main
idea is to approximate the solution of Poisson’s equation using a linear combination of fundamental
solutions and radial basis functions. As a result, we provide a direct and effective meshless method for
solving inverse problems with inhomogeneous terms. Numerical results in 2D and 3D show that our
proposed method is effective for Cauchy problems.
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1. Introduction

We consider a bounded and connected domain Q c R?, d=2,3
and the following classical Cauchy problem:

AuXx)=f(x), Xxe®, (1)

with measured Dirichlet and Neumann data on the known fixed
boundary I" (accessible for data measurement), which is a portion
of the boundary oQ2

ux)y=gx), xel, 2)
oux)
oy =he, xel, 3)

where v is the unit outward normal vector on I', and f{x), g(x), h(x)
are given functions.

The above-mentioned Cauchy problem is a typical ill-posed
problem in the sense of Hadamard [13] that any small error in the
measured data may induce enormous error to the solution.
The uniqueness and conditional stability of the solution to the
problem (1)-(3) was given by Bukhgeim et al. [3]. The Cauchy
problem for the Laplace equation arises from many branches of
science and engineering, for example, non-destructive testing
[3,16,36]. Recently, many numerical methods were employed to
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solve such problem, for instance, Backus-Gilbert algorithm [16],
FEM [8], BEM [6] and MFS [33-35]. In general, the solution of the
inverse problem does not depend continuously on the initial data,
as shown by Wei and Hon [32] for a Cauchy problem which often
arises in monitoring the possibility of boundary corrosion in iron
melting process.

During the past decades, the method of fundamental solution
(MFS) is considered as a meshless method and has been proven to
be a highly effective boundary meshless method when the
fundamental solutions of the governing equations are available
[9,12]. Compared with the traditional mesh methods (FDM,
FEM and BEM) [10], the meshless methods have the following
advantages:

e [t is applicable to more complicated domains.

e [t is readily extendable to solve high-dimensional problems.

e It can be extended to solve time-dependent problems with
known fundamental solutions.

The MFS was first introduced by Kupradze and Aleksidze [22]
in 1964. It had been largely applied to solve various types of
homogeneous partial differential PDEs [9,12]. For instances, the
solutions for potential problems by Mathon and Johnston [26],
exterior Dirichlet acoustic scattering problem by Kress and
Mohsen [20], and general second order linear elliptic partial
differential equations by Clements [7]. Recently, Hon and Wei
applied the MFS to solve the Cauchy problem of Laplace equation
and heat equation in one-dimension [17], multidimensions [19],
and for various kinds of boundary conditions [18]. The MFS also
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