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a b s t r a c t

Radial basis function (RBF) methods that employ infinitely differentiable basis functions featuring a

shape parameter are theoretically spectrally accurate methods for scattered data interpolation and for

solving partial differential equations. It is also theoretically known that RBF methods are most accurate

when the linear systems associated with the methods are extremely ill-conditioned. This often prevents

the RBF methods from realizing spectral accuracy in applications. In this work we examine how

extended precision floating point arithmetic can be used to improve the accuracy of RBF methods in an

efficient manner. RBF methods using extended precision are compared to algorithms that evaluate RBF

methods by bypassing the solution of the ill-conditioned linear systems.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

IEEE 64-bit floating-point arithmetic (double precision) is
sufficiently accurate for most scientific applications. However, for
a rapidly growing body of important scientific computing
applications, a higher level of numeric precision is required.
These applications include supernova simulations, climate mod-
eling, planetary orbit calculations, Coulomb n-body atomic
systems, scattering amplitudes of quarks, gluons and bosons,
nonlinear oscillator theory, quantum field theory, and experi-
mental mathematics [1,2]. In this work, we show that radial basis
function (RBF) approximation methods are another area that
benefit from extended numerical precision.

In Ref. [3], numerical experiments with Elliptic PDEs were
performed using Mathematica’s arbitrary precision package with
100-digit accuracy to gain some insight into the connection
between the accuracy of the RBF method using the inverse
multiquadric RBF, maximum grid spacing, and the shape para-
meter. The authors determined that for a given grid spacing, an
optimal value of the shape parameter exists whose value should
not be decreased unless the grid spacing was refined. Also in [3],
the authors concluded that in order to achieve optimal accuracy
and efficiency in solving elliptic boundary value problems, it is
better to use a relatively coarse grid and extended precision than
standard precision and a fine grid. The authors in [3] present an
extended precision calculation using a software package written
in the C++ programming language that is available at [4]. They
conclude that while promising, that since extended precision

computations with C++ is relatively new, further investigation in
this direction is needed. In this work we continue to investigate
whether extended precision calculations using C++ can improve
the accuracy and efficiency of RBF methods.

2. Radial basis function approximation

In this section the RBF interpolation method and the RBF
asymmetric collocation method (Kansa’s method) [5] for the
solution of steady PDEs are summarized. Over the last 25 years,
RBF methods have become an important tool for the interpolation
of scattered data and for solving partial differential equations [6].
Recent books [7,8,6,9] on RBF methods can be consulted for more
information.

The RBF interpolation method uses linear combinations of
translates of one function fðrÞ of a single real variable. Given a set
of centers x1

c ,y,xN
c in Rd, the RBF interpolant takes the form

sðxÞ ¼
XN

j ¼ 1

ajfðJx�xc
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We focus on RBFs fðrÞ that are infinitely differentiable and that
contain a free parameter, e, called the shape parameter. Some
examples from this class of RBF are listed in Table 1. In all the
numerical examples, we have used the MQ which is
representative of this class and is popular in applications.
The coefficients, a, are chosen by enforcing the interpolation
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