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The boundary element method (BEM) is a popular technique to solve engineering problems. We
compare the circular arc elements (CAE) discretization to both linear and quadratic discretizations.
The main aim of this paper is to determine analytical expressions for the discretization error in 2D BEM
for the Laplace equation using CAE discretization. The results are validated by numerical examples.
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1. Introduction

The boundary element method (BEM) [1,2] has been used
successfully to solve problems in engineering. The core task of the
BEM is to determine unknown surface sources on boundaries.
The accuracy of the BEM depends significantly on the order of the
approximation [3]. Piecewise-constant approximations to
surface sources lead to discontinuities in the approximation of
these sources and a subsequent reduction in the accuracy of the
computation [3,4]. To overcome the reduction in accuracy of
piecewise-constant approximations it has been proposed that
isoparametric boundary elements be used to approximate
unknown surface sources on the boundary [4]. A drawback of
using isoparametric boundary elements is the large number
of nodes required for computational accuracy. To determine the
number of required computational nodes the order of the
interpolating polynomial must be multiplied by the number of
points used to discretize the boundary [4,6]. An improvement on
the use of interpolating polynomials is to use spline functions [5].
The discretization errors can be ignored by assuming the
boundary is a polygon [7-9].

In this paper we investigate discretization errors that occur in
the circular arc element (CAE) method. The CAE method is a
boundary discretization method used in BEM. A brief discussion
about CAE is outlined in Chapter 3 of [1] for the Laplace equation.
In [1] the author utilized CAE to solve a 2D Laplace equation. The
author did not include a discussion on the discretization errors
that occur as a result of implementing the CAE. In this paper we
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consider the discretization errors of the CAE. We compare these
with known linear and quadratic interpolations used when
applying the BEM.

2. Background of BEM

Consider the following Laplace equation governing the potential
problem in a 2D domain £,

V2u(x) =0,

under the boundary conditions ux)=u(x) for all xeS,
and q(x) = ou/on(x) = q(x) for all xeS,, such that u is the potential
field in domain Q,I'=S; US, is the boundary of Q and n the
outward normal vector. The solution of the given boundary value
problem for all x € Q is given by (see [1,2])

u(x) = fr [GxY)aW)-HE U AT(Y),

such that

Gixy) _ 1 ar
on(y) ~ 2mron’

Gx,y) = %ln(r) and Hx,y)= 2.1
with r being the distance between the collocation point x and the
field point y ( Fig. 1). If xeI' and boundary I' is smooth at
the collocation point x then the second Green’s identity may be
written as

1
2100 = f [Goeyaeo-Hexyucoldro).
r

The boundary I will be discretized (see [1]) and the values of u
and g will be interpolated by polynomials. So after numerical
implementation we obtain the linear equation Gg—Hu = 0, where
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