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This paper describes Fourier differential quadrature method (FDQM). It is the combination of the Fourier

spectral method and differential quadrature method (DQM) in barycentric form as a numerical method

for solving problems for thin plates resting on Winkler foundations with irregular domains. The solution is

decomposed into a polynomial particular solution for the inhomogeneous equation and the general

solution for the homogeneous equation. In the solution procedure, the arbitrary distributed loading is first

approximated by the Chebyshev polynomials and thus, the desired polynomial particular solution is

obtained. For the latter, we use Fourier series expansion and determine the Fourier coefficients from the

boundary conditions. Furthermore, the complex boundary conditions on irregular domains can be solved

with DQM directly. Finally, numerical experiments are carried out to demonstrate the flexibility, high

efficiency and accuracy of our method for irregular domains.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Linear elastic bending problems of plates involving complex
geometries, loading and boundary conditions have been exten-
sively studied. Besides the traditional methods, such as the finite
difference method and the finite element method, the boundary
element method (BEM) also has been widely used for solving these
problems [1]. It should be pointed out that a lot of computational
effort is required for the complicated numerical domain integration
using the traditional BEM formulation. Moreover, the fundamental
solution is a spatially oscillating function, and a very fine
discretization mesh is desired in the case of large values of the
wave number. The most important shortcoming of such a
formulation is the fact that the fundamental solution is
dependent on the wave number and all the integrals are to be
recalculated, if the boundary-value problem is to be solved for
different values of the frequency. These calculations are very time-
consuming and inefficient. In the recent years, researchers have
paid attention to the meshless numerical methods without
employing the concept of elements. The meshfree boundary-
type collocation methods have attracted a lot of attention in the
numerical solutions of various partial differential equations, e.g.
the method of fundamental solution (MFS) which can solve the
homogeneous problems with boundary-only discretization.
However, it requires inner nodes in conjunction with the other

techniques to handle inhomogeneous problems. Since 1980s,
the dual reciprocity method (DRM) and the multiple reciprocity
method (MRM) have emerged as the two most promising
techniques to solve inhomogeneous problems [2]. In 1992,
Sladek et al. proposed the MRM-BEM [3]. It could transforms the
domain integrals into boundary integrals which are frequency-
independent. Hence, once evaluated, boundary integrals can be
reemployed in computations for any frequency. Later, Golberg et al.
combined the MFS and the DRM as a mature meshless numerical
method and extended the MFS-DRM to Helmholtz and diffusion
problems [4] . In these works, the inhomogeneous source terms
were approximated by augmented polynomial spline. Further-
more, Fu et al. developed the MRM-based meshfree boundary
particle method (BPM) [5]. Comparing with the MFS-DRM, since
the striking advantage of MRM over the DRM is that it does not
require using inner nodes at all for the particular solution, BPM
requires much less computational effort. However, the MRM is
computationally expensive in the construction of the interpolation
matrix and has limited feasibility for general inhomogeneous
problems due to its use of high-order Laplacian operators.

In this article, we are interested in thin plate bending problems
on Winkler foundation with arbitrary shapes and complex bound-
ary conditions. We present a new method based on Fourier
differential quadrature method (FDQM). It combines Fourier
spectral method [6] and differential quadrature method (DQM)
[7]. Fourier spectral method has the advantage of high accuracy
with less unknowns, but it is limited to solving problems on
circle domain or with periodic initial or boundary conditions. For
the traditional DQM, it is efficient and keeps high accuracy for
rectangle domain. Generally, the number of the unknowns is N2.
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