

Applications of differential subordination to certain subclasses of p-valent meromorphic functions involving a certain operator

A.O. Mostafa*
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

A R T I CLE INFO

Article history:

Received 16 April 2010
Received in revised form 16 April 2011
Accepted 18 April 2011

Keywords:

Analytic
p-valent
Meromorphic
Linear operator
Differential subordination

Abstract

By making use of the method of differential subordination, we investigate some properties of certain classes of p-valent meromorphic functions, which are defined by means of a certain operator.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For any integer $m>-p$, let $\sum_{p, m}$ denote the class of all meromorphic functions f normalized by:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=m}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in a punctured unit disk $U^{*}=\{z: z \in \mathbb{C}$ and $0<|z|<1\}=U \backslash\{0\}$. For convenience, we write $\sum_{p,-p+1}=\sum_{p}$. If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence (see [1-3]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(U) \subset g(U)
$$

For functions $f(z) \in \sum_{p, m}$ given by (1.1) and $g(z) \in \sum_{p, m}$ given by $g(z)=z^{-p}+\sum_{k=m}^{\infty} b_{k} z^{k}$, the Hadamard product of $f(z)$ and $g(z)$ is given by:

$$
\begin{equation*}
(f * g)(z)=z^{-p}+\sum_{k=m}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.2}
\end{equation*}
$$

For complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{s}\left(\beta_{j} \notin Z_{0}^{-}=\{0,-1,-2, \ldots\} ; j=1,2, \ldots, s\right)$, we define the generalized hypergeometric function ${ }_{l} F_{s}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{s} ; z\right)$ (see, for example, [4]) by the following infinite series:

$$
\begin{equation*}
{ }_{l} F_{s}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{l}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{s}\right)_{k}(1)_{k}} z^{k} \quad\left(l \leq s+1 ; s, l \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; z \in U\right) \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: * Tel.: +20 502246254; fax: +20 502246104.

 E-mail address: adelaeg254@yahoo.com.

