Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Error bounds for weighted 2-point and 3-point Radau and Lobatto quadrature rules for functions of bounded variation

A. Aglić Aljinović^{a,*}, S. Kovač^b, J. Pečarić^c

^a Department of Applied Mathematics, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia ^b Faculty of Geotechnical Engineering, University of Zagreb, Hallerova aleja 7, 42000 Varaždin, Croatia

^c Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

ARTICLE INFO

Article history: Received 6 February 2010 Received in revised form 12 December 2010 Accepted 6 April 2011

Keywords: 2-point and 3-point Radau and Lobatto quadrature formulae Montgomery identity

1. Introduction

Dragomir et al. in [1] established the following identity:

Theorem 1. Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded function on [a, b], and $x_1, x_2, x_3 \in [a, b]$ such that $x_1 \le x_2 \le x_3$. Then the following identity holds

$$\frac{x_1 - a}{b - a}f(a) + \frac{x_3 - x_1}{b - a}f(x_2) + \frac{b - x_3}{b - a}f(b) = \frac{1}{b - a}\int_a^b f(t)dt + \frac{1}{b - a}\int_a^b S(x_1, x_2, x_3, t)df(t)$$
(1.1)

where $S(x_1, x_2, x_3, t)$ is defined by

$$S(x_1, x_2, x_3, t) = \begin{cases} t - x_1, & a \le t \le x_2, \\ t - x_3, & x_2 < t \le b. \end{cases}$$

If we take $x_1 = a, x_3 = b$ the identity (1.1) reduces to a *Montgomery identity* for Riemann–Stieltjes integral (see for instance [2])

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t) dt + \int_{a}^{b} P(x, t) df(t)$$
(1.2)

* Corresponding author. Tel.: +385 16129965; fax: +385 16129946.

E-mail addresses: andrea.aglic@fer.hr (A. Aglić Aljinović), skovac@gfv.hr (S. Kovač), pecaric@hazu.hr (J. Pečarić).

ABSTRACT

We present a weighted generalization of Montgomery identity for Riemann–Stieltjes integral and use it to obtain weighted generalization of a recently obtained inequality, as well as weighted 2-point and 3-point quadrature formulae of closed and semi-closed type for functions of bounded variation.

© 2011 Elsevier Ltd. All rights reserved.

^{0895-7177/\$ –} see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2011.04.006