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a b s t r a c t

We study learning algorithms for classification generated by regularization schemes in
reproducing kernel Hilbert spaces associated with a general convex loss function in a non-
i.i.d. process. Error analysis is studied and our main purpose is to provide an elaborate
capacity dependent error bounds by applying concentration techniques involving the ℓ2-
empirical covering numbers.
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1. Introduction

In this paper, we consider learning algorithms for classification with non-i.i.d. sampling processes.
In a binary classification problem, the input space is a compact subset X ⊂ Rd and the outputs space Y = {−1, 1}

represents two classes. Classification algorithms produce binary classifiers C : X → Y . Let ρ be a probability measure
defined on Z := X × Y . The prediction ability of a classifier C is measured by themisclassification error which is defined as

R(C) = Prob(x,y)∈(Z,ρ){C(x) ≠ y} =

∫
X
ρx(y ≠ C(x))dρX . (1.1)

HereρX is themarginal distribution ofρ onX andρx is the conditional distribution at x ∈ X . The best classifier thatminimizes
the misclassification error is the Bayes rule given by

fc(x) =


1, if ρx(y = 1) ≥ ρx(y = −1),
−1, if ρx(y = 1) < ρx(y = −1). (1.2)

Since ρx is unknown, fc cannot be computed directly. The goal of classification algorithms is to find classifiers which
approximate fc from a finite sample z = {zi = (xi, yi)}mi=1 ∈ Zm. The classifiers considered here are induced by real-valued
functions f : X → R as C = sgn(f )which is defined by sgn(f )(x) = 1 if f (x) ≥ 0 and sgn(f )(x) = −1 otherwise. We define
a loss function φ : R → R+ and use the error φ(yf (x)) to measure the difference between the output y and the prediction
sgn(f )(x).

Definition 1. A function φ : R → R+ is called a classifying loss function if it is convex, differentiable at 0 with φ′(0) < 0,
and the smallest zero of φ is 1.
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