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1. Introduction

In this paper, we consider learning algorithms for classification with non-i.i.d. sampling processes.

In a binary classification problem, the input space is a compact subset X C R¢ and the outputs space Y = {—1, 1}
represents two classes. Classification algorithms produce binary classifiers € : X — Y. Let p be a probability measure
defined on Z := X x Y. The prediction ability of a classifier € is measured by the misclassification error which is defined as

REC) = PrOb(x.y)e(Z,p){@(X) Fy} = //Ox()’ # C(x))dpx. (1.1)
X

Here py is the marginal distribution of p on X and py is the conditional distribution at x € X.The best classifier that minimizes
the misclassification error is the Bayes rule given by

Jeto = {—1, if ooy = 1) < ey = —1). (12)
Since p, is unknown, f. cannot be computed directly. The goal of classification algorithms is to find classifiers which
approximate f. from a finite sample z = {z; = (x;, y;)}I".; € Z™. The classifiers considered here are induced by real-valued
functions f : X — R as € = sgn(f) which is defined by sgn(f)(x) = 1iff(x) > 0and sgn(f)(x) = —1 otherwise. We define
a loss function ¢ : R — R, and use the error ¢ (yf (x)) to measure the difference between the output y and the prediction

sgn(f) ().

Definition 1. A function ¢ : R — R, is called a classifying loss function if it is convex, differentiable at 0 with ¢’(0) < 0,
and the smallest zero of ¢ is 1.
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