Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity

Wei Yan^{a,*}, Yongsheng Li^a, Xingyu Yang^b

^a Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, PR China
^b School of Business Administration, South China University of Technology, Guangzhou, Guangdong 510640, PR China

ARTICLE INFO

Article history: Received 26 September 2009 Received in revised form 27 March 2011 Accepted 28 March 2011

Keywords: Cauchy problem Global well-posedness Modified Kawahara equation Sobolev spaces Bourgain spaces

1. Introduction

This paper is devoted to study the initial-value problem of the modified Kawahara equation

$$\partial_t u + \alpha \partial_s^5 u + \beta \partial_s^3 u + \gamma \partial_s u + \mu \partial_s (u^3) = 0, \quad x \in \mathbf{R}, \ t > 0, \tag{1.1}$$

$$u(x,0) = u_0(x), (1.2)$$

where $\alpha \neq 0$, β and γ are real numbers and μ is a complex number.

Model (1.1) is called the modified Kawahara equation which arises in the study of water waves with surface tension. When $\alpha = 0$, $\beta \neq 0$ and $\mu \neq 0$ in (1.1), we have the modified KdV equation which has been extensively studied by many authors, for instance, see [1–7]. In [3], the authors proved that the modified KdV equation is locally well-posed for the initial data in $H^{s}(\mathbf{R})$ with $s \geq \frac{1}{4}$. In [4], the authors proved that

 $\|\partial_x(u^3)\|_{X_{s,b-1}} \le C \|u\|_{X_{s,b}}^3$

for $s < \frac{1}{4}$ and $b \in \mathbf{R}$, is invalid, where $X_{s,b}$ is the standard Bourgain space associated to the modified KdV equation. In [5], the authors proved that the regularity requirement, $s \ge \frac{1}{4}$, is sharp. In [1], the authors established the global well-posedness of the modified KdV equation in the range $s > \frac{1}{4}$. In [6], the authors considered the local and global Cauchy problems for the generalized Korteweg–de Vries equation

$$\partial_t u + \partial_x^3 u + u^k \partial_x u = 0, \quad k \ge 4, \ k \in \mathbf{N}^+,$$

* Corresponding author.

ABSTRACT

This paper is concerned with the Cauchy problem of the modified Kawahara equation. By using the Fourier restriction norm method introduced by Bourgain, and using the *I*-method as well as the L^2 conservation law, we prove that the modified Kawahara equation is globally well-posed for the initial data in the Sobolev space $H^s(\mathbf{R})$ with $s > -\frac{3}{22}$. © 2011 Elsevier Ltd. All rights reserved.

E-mail addresses: yanwei.scut@yahoo.com.cn (W. Yan), yshli@scut.edu.cn (Y. Li), xyyangmath@gmail.com (X. Yang).

^{0895-7177/\$ –} see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2011.03.036