Contents lists available at ScienceDirect

ELSEVIER

Mathematical and Computer Modelling

Accurate matrix exponential computation to solve coupled differential models in engineering $\!\!\!\!^{\star}$

J. Sastre^{a,*}, J. Ibáñez^b, E. Defez^c, P. Ruiz^b

^a Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia, Spain ^b Instituto de Instrumentación para Imagen Molecular, Universidad Politécnica de Valencia, Spain ^c Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Spain

ARTICLE INFO

Article history: Received 18 October 2010 Received in revised form 22 December 2010 Accepted 23 December 2010

Keywords: Matrix exponential Scaling and squaring Taylor series

1. Introduction

ABSTRACT

The matrix exponential plays a fundamental role in linear systems arising in engineering, mechanics and control theory. This work presents a new scaling-squaring algorithm for matrix exponential computation. It uses forward and backward error analysis with improved bounds for normal and nonnormal matrices. Applied to the Taylor method, it has presented a lower or similar cost compared to the state-of-the-art Padé algorithms with better accuracy results in the majority of test matrices, avoiding Padé's denominator condition problems.

© 2011 Elsevier Ltd. All rights reserved.

Many engineering processes are described by systems of linear first-order ordinary differential equations with constant coefficients, whose solutions are given in terms of the matrix exponential, and a large number of methods for its computation have been proposed [1,2]. This work presents a competitive new scaling and squaring algorithm for matrix exponential computation. Throughout this paper $\mathbb{C}^{n \times n}$ denotes the set of complex matrices of size $n \times n$, I denotes the identity matrix for this set, $\rho(A)$ is the spectral radius of matrix A, and \mathbb{N} denotes the set of positive integers. The matrix norm $\|\cdot\|$ denotes any subordinate matrix norm; in particular $\|\cdot\|_1$ is the 1-norm. This paper is organized as follows. Section 2 presents the scaling and squaring error analysis and the developed algorithm, and Section 3 deals with numerical tests and conclusions. Next theorem will be used in next section to bound the norm of matrix power series.

Theorem 1. Let $h_l(x) = \sum_{k \ge l} b_k x^k$ be a power series with radius of convergence w, and let $\tilde{h}_l(x) = \sum_{k \ge l} |b_k| x^k$. For any matrix $A \in \mathbb{C}^{n \times n}$ with $\rho(A) < w$, if a_k is an upper bound for $||A^k|| (||A^k|| \le a_k)$, $p \in \mathbb{N}$, $1 \le p \le l$, and $\alpha_p = \max\{(a_k)^{\frac{1}{k}} : k = p, l, l+1, \ldots, l+p-1\}$, then $||h_l(A)|| \le \tilde{h}_l(\alpha_p)$. If p = 2 and l is odd the same bound holds taking $\alpha_2 = \max\{(a_k)^{\frac{1}{k}} : k = 2, l\}$.

$$\|h_{l}(A)\| \leq \sum_{j\geq 0} \sum_{i=l}^{l+p-1} |b_{i+jp}| \, \|A^{p}\|^{j} \|A^{i}\| \leq \sum_{j\geq 0} \sum_{i=l}^{l+p-1} |b_{i+jp}| \alpha_{p}^{i+jp} = \sum_{k\geq l} |b_{k}| \alpha_{p}^{k} = \tilde{h}_{l}(\alpha_{p}).$$

$$(1)$$

* Corresponding author. Tel.: +34 963879719; fax: +34 963877309. E-mail addresses: jorsasma@iteam.upv.es, jorsasma@dcom.upv.es (J. Sastre).

^{*} This work has been supported by Universidad Politécnica de Valencia grants PAID-05-09-4338, PAID-06-08-3307 and Spanish Ministerio de Educación grant MTM2009-08587.

^{0895-7177/\$ –} see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2010.12.049