Accurate matrix exponential computation to solve coupled differential models in engineering ${ }^{\star}$

J. Sastre ${ }^{\text {a,* }}$, J. Ibáñez ${ }^{\text {b }}$, E. Defez ${ }^{\text {c }}$, P. Ruiz ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia, Spain
${ }^{\text {b }}$ Instituto de Instrumentación para Imagen Molecular, Universidad Politécnica de Valencia, Spain
${ }^{\text {c }}$ Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Spain

ARTICLE INFO

Article history:

Received 18 October 2010
Received in revised form 22 December 2010
Accepted 23 December 2010

Keywords:

Matrix exponential
Scaling and squaring
Taylor series

Abstract

The matrix exponential plays a fundamental role in linear systems arising in engineering, mechanics and control theory. This work presents a new scaling-squaring algorithm for matrix exponential computation. It uses forward and backward error analysis with improved bounds for normal and nonnormal matrices. Applied to the Taylor method, it has presented a lower or similar cost compared to the state-of-the-art Padé algorithms with better accuracy results in the majority of test matrices, avoiding Padé's denominator condition problems.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering processes are described by systems of linear first-order ordinary differential equations with constant coefficients, whose solutions are given in terms of the matrix exponential, and a large number of methods for its computation have been proposed [1,2]. This work presents a competitive new scaling and squaring algorithm for matrix exponential computation. Throughout this paper $\mathbb{C}^{n \times n}$ denotes the set of complex matrices of size $n \times n, I$ denotes the identity matrix for this set, $\rho(A)$ is the spectral radius of matrix A, and \mathbb{N} denotes the set of positive integers. The matrix norm $\|\cdot\|$ denotes any subordinate matrix norm; in particular $\|\cdot\|_{1}$ is the 1 -norm. This paper is organized as follows. Section 2 presents the scaling and squaring error analysis and the developed algorithm, and Section 3 deals with numerical tests and conclusions. Next theorem will be used in next section to bound the norm of matrix power series.

Theorem 1. Let $h_{l}(x)=\sum_{k \geq 1} b_{k} x^{k}$ be a power series with radius of convergence w, and let $\tilde{h}_{l}(x)=\sum_{k \geq l}\left|b_{k}\right| x^{k}$. For any matrix $A \in \mathbb{C}^{n \times n}$ with $\rho(A)<w$, if a_{k} is an upper bound for $\left\|A^{k}\right\|\left(\left\|A^{k}\right\| \leq a_{k}\right), p \in \mathbb{N}, 1 \leq p \leq l$, and $\alpha_{p}=\max \left\{\left(a_{k}\right)^{\frac{1}{k}}: k=\right.$ $p, l, l+1, \ldots, l+p-1\}$, then $\left\|h_{l}(A)\right\| \leq \tilde{h}_{l}\left(\alpha_{p}\right)$. If $p=2$ and l is odd the same bound holds taking $\alpha_{2}=\max \left\{\left(a_{k}\right)^{\frac{1}{k}}: k=2, l\right\}$.

Proof. For the first part note that

$$
\begin{equation*}
\left\|h_{l}(A)\right\| \leq \sum_{j \geq 0} \sum_{i=l}^{l+p-1}\left|b_{i+j p}\right|\left\|A^{p}\right\|^{j}\left\|A^{i}\right\| \leq \sum_{j \geq 0} \sum_{i=l}^{l+p-1}\left|b_{i+j p}\right| \alpha_{p}^{i+j p}=\sum_{k \geq l}\left|b_{k}\right| \alpha_{p}^{k}=\tilde{h}_{l}\left(\alpha_{p}\right) \tag{1}
\end{equation*}
$$

[^0]0895-7177/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2010.12.049

[^0]: . This work has been supported by Universidad Politécnica de Valencia grants PAID-05-09-4338, PAID-06-08-3307 and Spanish Ministerio de Educación grant MTM2009-08587.

 * Corresponding author. Tel.: +34 963879719; fax: +34 963877309.

 E-mail addresses: jorsasma@iteam.upv.es, jorsasma@dcom.upv.es (J. Sastre).

