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sunny nonexpansive retract of K with Q a nonexpansive retraction. It is our purpose in
this paper to prove the convergence of two viscosity approximation schemes to a common
fixed point X = Qf (x) of a family of multivalued nonexpansive mappings in Banach spaces.
Moreover, x is the unique solution in F to a certain variational inequality.
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1. Introduction

Let X be a Banach space with dual X* and K be a nonempty subset of X. A gauge function is a continuous strictly increasing
function ¢ : Rt — R suchthat ¢(0) = 0and lim;_, o, ¢(t) = oc. The duality mappingJ, : X — X* associated with a gauge
function ¢ is defined by J,(x) := {f € X* : (x,f) = x|l Ifll, Ifll = (XD}, x € X, where (., .) denotes the generalized
duality pairing. In the particular case ¢(t) = t, the duality map /] = J, is called the normalized duality map. It is noted
that J,(x) = %j(x), and if X is smooth then J, is single valued and norm to weak* continuous (see [1]). When {x,} is a
sequence in X, then x, — x(x,, — X, X, — x) will denote strong (weak, weak*) convergence of the sequence {x,} to x.

Following Browder [2], we say that a Banach space X has weakly continuous duality mapping if there exists a gauge
function ¢ for which the duality map J,, is single valued and weak to weak* sequentially continuous; i.e. if {x,} is a sequence
in X weakly convergent to a point x, then the sequence {J, (x,)} converges weakly* to J,(x). It is known that[,(1 <p < 1)

spaces have a weakly continuous duality mapping J, with a gauge ¢(t) = tP~1, Setting

+oo
<1>(t)=f p()dr, t=>0,
0

it is easy to see that @(t) is a convex function and that J,(x) = 0@ (||x||), for x € X, where 0 denotes the subdifferential
in the sense of convex analysis. The set K is called proximinal if, for each x € X, there exists an element y € K such that
lx =yl = d(x, K), where d(x, K) = inf{||x — z|| : z € K}. Let CB(K), C(K), P(K), F(T) denote the family of nonempty closed
bounded subsets of K, the family of nonempty compact subsets of K, the family of nonempty proximinal bounded subsets
of K, and the set of fixed points, respectively. A multivalued mapping T : K — CB(K) is said to be nonexpansive if

H(Tx,Ty) < Ix—yl, xy €K,
where H(-, -) denotes the Hausdorff metric on CB(X), defined by

H(A, B) := max {sup inf ||x — y||, supinf ||x —y||} , A,Be (CB(X).
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