Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Fuzzy *-homomorphisms and fuzzy *-derivations in induced fuzzy C*-algebras

Choonkil Park^a, Jung Rye Lee^b, Themistocles M. Rassias^c, Reza Saadati^{d,*}

^a Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea

^b Department of Mathematics, Daejin University, Kyeonggi 487-711, Republic of Korea

^c Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

^d Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, I.R., Iran

ARTICLE INFO

Article history: Received 23 February 2011 Received in revised form 4 May 2011 Accepted 4 May 2011

Keywords: Induced fuzzy C*-algebra Fuzzy *-homomorphism Fuzzy *-derivation Fixed point Hyers-Ulam stability Cauchy-Jensen functional equation Cauchy-Jensen functional inequality

ABSTRACT

Using the fixed point method, we prove the Hyers–Ulam stability of the Cauchy–Jensen functional equation and of the Cauchy–Jensen functional inequality in fuzzy Banach *-algebras and in induced fuzzy C*-algebras.

Furthermore, using the fixed point method, we prove the Hyers–Ulam stability of fuzzy *-derivations in fuzzy Banach *-algebras and in induced fuzzy C*-algebras.

Published by Elsevier Ltd

1. Introduction and preliminaries

The theory of fuzzy space has progressed greatly, developing the theory of randomness. Some mathematicians have defined fuzzy norms on a vector space from various points of view [1–6]. Following Cheng and Mordeson [7], Bag and Samanta [1] gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [8] and investigated some properties of fuzzy normed spaces [9].

We use the definition of fuzzy normed spaces given in [1,5,10] to investigate a fuzzy version of the Hyers–Ulam stability for the Cauchy–Jensen functional equation in the fuzzy normed *-algebra setting.

Definition 1.1 ([1,5,10,11]). Let X be a complex vector space. A function $N : X \times \mathbb{R} \rightarrow [0, 1]$ is called a *fuzzy norm* on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,

(N₁) N(x, t) = 0 for $t \le 0$;

(N₂) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N₃) $N(cx, t) = N(x, \frac{t}{|c|})$ if $c \in \mathbb{C} \setminus \{0\}$;

(N₄) $N(x + y, s + t) \ge \min\{N(x, s), N(y, t)\};$

(N₅) $N(x, \cdot)$ is a non-decreasing function of \mathbb{R} and $\lim_{t\to\infty} N(x, t) = 1$;

(N₆) for $x \neq 0$, $N(x, \cdot)$ is continuous on \mathbb{R} .

The pair (X, N) is called a *fuzzy normed vector space*.

^k Corresponding author. E-mail addresses: baak@hanyang.ac.kr (C. Park), jrlee@daejin.ac.kr (J.R. Lee), trassias@math.ntua.gr (T.M. Rassias), rsaadati@eml.cc (R. Saadati).

0895-7177/\$ – see front matter. Published by Elsevier Ltd doi:10.1016/j.mcm.2011.05.012

