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a b s t r a c t

By developing some new analysis technique, we show that the following discrete single
species model with feedback control and time delays is permanent.N(n + 1) = N(n) exp


r(n)

[
1 −

N2(n − m)
k2(n)

− c(n)u(n − η)

]
,

∆u(n) = −a(n)u(n)+ b(n)N(n − σ),

whereN(n) is the density of species, u(n) is the control variable,∆ is the first-order forward
difference operator ∆u(n) = u(n + 1) − u(n). m, σ , η are all nonnegative integers and
r(n), a(n), k(n), c(n), b(n), d(n) are bounded nonnegative sequences. Our result shows that
feedback control has no influence on the persistent property of the system.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Gopalsamy [1] considered the following feedback single species system of differential equations with delays
dN(t)
dt

= rN(t)
[
1 −

N2(t − τ)

k2
− cu(t)

]
,

du(t)
dt

= −au(t)+ bN(t − τ),

(1.1)

where r, k, a, b, c ∈ (0,+∞). In the theory of mathematical biology, system (1.1) is a famous feedback control model. K.
Gopalsamy thought it was valuable to derive sufficient conditions for the global asymptotic stability of the equilibrium of
system (1.1).

Fan et al. [2] generalized the above system to the nonautonomous periodic case, that is, they considered the following
periodic feedback single species system of differential equations with delays:

dN(t)
dt

= r(t)N(t)
[
1 −

N2(t − τ(t))
k2(t)

− c(t)u(t − δ(t))
]
,

du(t)
dt

= −a(t)u(t)+ b(t)N(t − τ(t)),
(1.2)

where τ , δ, a, b, c, r, k ∈ C(R, (0,+∞)) are ω-periodic functions. The assumption of periodicity of the parameters
a(t), b(t), c(t), k(t), r(t) is a way of incorporating the periodicity of the environment (e.g. seasonal effects of weather
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