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a b s t r a c t

The shrinking projection method has gained more and more attention as a powerful tool
for the approximation of a fixed point of nonlinear mappings. In this paper, we introduce
a new shrinking projection method for the approximation of fixed points of a family of
pseudocontractive mappings in a Hilbert space. Using this method, we also deal with the
problem of finding a common zero of a family of monotone operators and obtain a strong
convergence theorem.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H . Let T be a self-mapping of C . We use F(T )
to denote the set of fixed points of T (i.e., F(T ) = {x ∈ C : Tx = x}).

Definition 1.1 ([1]). A mapping T : C → C is said to be strict pseudo-contraction if there exists a constant 0 ≤ k < 1 such
that

‖Tx − Ty‖2
≤ ‖x − y‖2

+ k‖(I − T )x − (I − T )y‖2, (1.1)

for all x, y ∈ C . If k = 1, then T is said to be pseudo-contraction, i.e.,

‖Tx − Ty‖2
≤ ‖x − y‖2

+ ‖(I − T )x − (I − T )y‖2, (1.2)

equivalent,

⟨(I − T )x − (I − T )y, x − y⟩ ≥ 0, (1.3)

for all x, y ∈ C .

A mapping T is said to be nonexpansive, if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C .
It is obvious that all nonexpansive mappings and strictly pseudocontractive mappings are pseudocontractive mappings.
Iterativemethods for finding fixed points of nonexpansivemappings are an important topic in the theory of nonexpansive

mappings and have wide applications in a number of applied areas, such as the convex feasibility problem [2–4], the split
feasibility problem [5–7] and image denoising and deblurring [8–10]. However, the Picard sequence {T nx}∞n=0 often fails to
converge even in the weak topology. Thus averaged iterations prevail. Mann’s iteration is one of the type and is defined by:

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1.4)
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