Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables

H.M. Srivastava ${ }^{\text {a,* }}$, Zhi-Hua Zhang ${ }^{\text {b }}$, Yu-Dong Wu ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
${ }^{\mathrm{b}}$ Department of Mathematics, Zixing Municipal High School, Chenzhou, Hunan 423400, People's Republic of China
${ }^{\text {c }}$ Department of Mathematics, Zhejiang Xinchang High School, Shaoxing, Zhejiang 312500, People's Republic of China

ARTICLE INFO

Article history:

Received 31 May 2011
Accepted 23 June 2011

Keywords:

Hermite-Hadamard inequalities
Jensen's inequality
Xiao-Srivastava-Zhang-Pečarić-Svrtan-Jensen
type inequalities
Refinements and extensions
Convex functions

Abstract

The main object of this paper is to give several refinements and extensions of the Hermite-Hadamard and Jensen inequalities in n variables. Relevant connections of the results presented here and the various inequalities derived in earlier investigations are also indicated.

© 2011 Elsevier Ltd. All rights reserved.
\qquad

1. Introduction

Let

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \quad \text { and } \quad \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} \quad(\mathbb{N}:=\{1,2,3, \ldots\})
$$

Also let \mathbb{I} be a convex subset of an arbitrary real linear space \mathbb{X}. A function $f: \mathbb{I} \rightarrow \mathbb{R}$ is called convex if, for every two elements $a, b \in \mathbb{I}$, the following inequality holds true:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leqq \frac{f(a)+f(b)}{2} . \tag{1.1}
\end{equation*}
$$

We begin by recalling the following known results.
Theorem 1. (see [1,2]) For every convex function f, the Jensen inequality:

$$
\begin{equation*}
f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \leqq \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{1.2}
\end{equation*}
$$

and the weighted Jensen inequality:

$$
\begin{equation*}
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leqq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: * Corresponding author. Tel.: +1 250472 5313; fax: +1 2507218962.

 E-mail addresses: harimsri@math.uvic.ca (H.M. Srivastava), zxzh1234@163.com (Z.-H. Zhang), yudong.wu@yahoo.com.cn (Y.-D. Wu).

