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a b s t r a c t

Some spectral problems for differential operators are naturally posed on thewhole real line,
often leading to eigenvalues plus continuous spectrum. Then the numerical approximation
typically involves three processes: (a) reduction to a finite interval; (b) discretization;
(c) application of a numerical eigenvalue solver such as the QR-algorithm.

Reduction to a finite interval and discretization typically eliminate the continuous
spectrum. However, through round-off error, the continuous spectrum may show up
again when the eigenvalue solver is applied. (In some sense, three wrongs make a right.)
Interestingly, not all parts of the continuous spectrum show up in the same way, however.
We illustrate this observation by numerical examples. A perturbation argument, though
non-rigorous, explains the observation.

© 2011 Elsevier Ltd. All rights reserved.

1. On numerical spectra for the linearized Burgers’ equation

The stability of a traveling wave depends on the spectrum of a differential operator L obtained by linearization about the
wave profile. As a simple example, consider Burgers’ equation

ut = uxx −
1
2
(u2)x, x ∈ R, t ≥ 0,

with stationary solution U(x) = − tanh x
2 . Linearization about U(x) leads to the spectral problem

Lu ≡ uxx − (Uu)x = su where L : H2(R) → L2(R). (1)

In this case, the operator L has the simple eigenvalue s0 = 0 with corresponding eigenfunction u0(x) = U ′(x). Also,
since U(x) → ±1 as x → ∓∞, the operator L has the same continuous spectrum as the operators L+u = uxx + ux and
L−u = uxx − ux. Therefore, the continuous spectrum of L is the parabolic line

σcont = {s ∈ C | s = −k2 + ik, k ∈ R} (2)

obtained by applying L± to u(x) = eikx.
Note that L+ and L− both have the same continuous spectrum, σcont , given in (2). Thus, for the operator L in (1) the line (2)

should be thought of as double. In the next section we modify Burgers’ equation to break the double line into two distinct
parabolas. Doing this in two different ways, will more clearly illustrate the main point of the paper.
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