Contents lists available at SciVerse ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Mixed θ -continuity on generalized topological spaces

Won Keun Min

Department of Mathematics, Kangwon National University, Chuncheon 200-701, Republic of Korea

ARTICLE INFO

Article history: Received 25 March 2011 Received in revised form 13 June 2011 Accepted 14 June 2011

Keywords: Mixed weak continuity Mixed θ -continuity Mixed faint continuity (v_1, v_2) -regular G-regular

ABSTRACT

We introduce and investigate the notions of mixed $\theta(\mu, \nu_1\nu_2)$ -continuous functions and mixed faintly $(\mu, \nu_1\nu_2)$ -continuous functions between a generalized topology μ and two generalized topologies ν_1, ν_2 . We investigate relationships between such two continuities and another mixed continuity on generalized topological spaces.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Császár [1] introduced the notions of generalized topology and generalized open sets. He also introduced the notions of continuous functions and associated interior and closure operators on generalized topological spaces. In [2], he introduced and investigated the notions of mixed generalized open sets ((v_1, v_2) -semiopen, (v_1, v_2) -preopen, (v_1, v_2) - β' -open) on two generalized topologies. Császár and Makai jr. [3] modified the notions of δ and θ by mixing two generalized topologies. In the same way, the author introduced and investigated the notion of mixed weak (μ , v_1v_2)-continuity [4] between a general topology μ and two generalized topologies v_1 , v_2 . The purpose of this paper is to introduce and investigate the notions of mixed $\theta(\mu, v_1v_2)$ -continuity and mixed faint (μ , v_1v_2)-continuity between a generalized topology μ and two generalized topologies v_1 , v_2 . In particular, we investigate characteristics of the continuities and relationships among mixed θ -continuity, mixed faint continuity and mixed weak continuity on general topological spaces.

2. Preliminaries

Let *X* be a nonempty set, and let μ be a collection of subsets of *X*. Then μ is called a *generalized topology* (briefly GT) [1] on *X* if $\emptyset \in \mu$ and $G_i \in \mu$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \mu$. We say that the GT μ is *strong* [3] if $X \in \mu$. We call the pair (*X*, μ) a *generalized topological space* (briefly GTS) on *X*. The elements of μ are called μ -open sets and the complements are called μ -closed sets. The generalized-closure of a subset *A* of *X*, denoted by $c_{\mu}(A)$, is the intersection of generalized closed sets including *A*. The interior of *A*, denoted by $i_{\mu}(A)$, is the union of generalized open sets included in *A*. Let μ be a GT on a nonempty set *X* and *P*(*X*) the power set of *X*. Let us define the collection $\theta(\mu) \subseteq P(X)$ by $A \in \theta(\mu)$ iff for each $x \in A$, there exists $M \in \mu$ such that $c_{\mu}M \subseteq A$ [5]. Then $\theta(\mu)$ is also a GT included in μ [5]. The elements of $\theta(\mu)$ are called θ -open sets and the complements are called θ -closed sets. Simply, $\theta(\mu)$ is denoted by θ .

Let (X, μ) be a GTS and $A \subseteq X$. We mention here the following notations:

 $c_{\theta}(A) = \bigcap \{F \subseteq X : A \subseteq F, F \text{ is } \theta \text{-closed } F \text{ in } X\} [6];$

 $i_{\theta}(A) = \bigcup \{ V \subseteq X : V \subseteq A, V \text{ is } \theta \text{-open } V \text{ in } X \} [6];$

E-mail address: wkmin@kangwon.ac.kr.

^{0895-7177/\$ –} see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.mcm.2011.06.032