Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/apcata

New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells

Igor Leontyev^{a,b,*}, Aleksandra Kuriganova^c, Yuri Kudryavtsev^c, Brahim Dkhil^a, Nina Smirnova^c

^a Laboratoire Structures, Propriétés et Modélisation des Solides, Ecole Centrale Paris, CNRS-UMR8580, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex, France ^b Physics Department, Southern Federal University, 5 Zorge St., Rostov-on-Don 344090, Russia

^c South-Russian State Technical University, 132 Prosveschenia St., Novocherkassk 346428, Russia

ARTICLE INFO

Article history: Received 17 August 2011 Received in revised form 14 April 2012 Accepted 16 April 2012 Available online 23 April 2012

Keywords: Low-temperature fuel cell Platinum nanoparticles Electrocatalysis Oxygen reduction reaction (ORR) X-ray diffraction (XRD) Shape

1. Introduction

Fuel cells represent a promising power source for use in a variety of systems, ranging from automotive to portable electronic devices [1]. Currently, the most promising electrocatalysts for fuel cells are those employing nanoparticles of pure or alloyed Pt deposited onto a conductive support [2]. However, the high cost of platinum has erected a barrier to wide commercialization of Pt-containing fuel cells. Accordingly, extensive efforts have been directed toward the search for either non-platinum catalysts or ways to most efficient utilization of platinum, i.e., mass production of Pt/C catalysts featuring elevated catalytic activity for oxygen reduction and fuel oxidation, CO tolerance and high aggregation stability of the constituent particles.

Apart from the composition and particle size, a decisive role in electrocatalysis involving nanoparticles is played by the particle shape [3] and crystallographic orientation [4]. As known, owing to an increased concentration of the active sites, the high-index planes of bulk Pt single crystals exhibit much higher activity than do the more common stable planes, such as $\{111\}$, $\{100\}$, and even $\{110\}$ ones [5]. A similar trend was observed with Pt nanoparticles [6]. On the other hand, the high-index planes demonstrate less

ABSTRACT

Driven by global environmental concerns, great efforts are currently made to develop novel, cheap and practical means for producing highly efficient electrocatalysts, specifically for the low-temperature fuelcell applications. Employing an old but yet unexplored method based on electrochemical dispergation of platinum by the alternating current, we show that the freshly prepared Pt/C catalysts exhibit greatly enhanced catalytic activity (up to 350% for oxygen reduction and up to 200% for ethylene glycol oxidation) as compared with that of a commercially available counterpart (E-TEK). A key role in these reactions is attributed to a specific nanoparticle morphology. These findings should provide a revival of an ancient but simple and efficient electrochemical process and motivate further researches in the field.

© 2012 Elsevier B.V. All rights reserved.

resistance to CO-poisoning compared to the low-index ones (which leads to a lower catalytic activity) [7]. Therefore, nanosized Pt catalysts with optimized morphology providing an increase in both the catalytic activity and resistance to CO-poisoning are obviously required for future device applications.

One of the major approaches to improving the activity of Pt-based catalysts is optimization of the synthesis procedure. Currently, various physical and chemical techniques are employed for producing Pt/C catalysts. Dozens of methods developed so far have been mostly of the condensation (bottom-up) type. The formation of the nanoparticles here proceeds via chemical reduction of the relevant precursors by different reducing agents, such as hydrogen, NaBH₄, or ethylene glycol which may simultaneously serve as a solvent (the "polyol" process) [8]. Other group of methods such as the atomic layer deposition [9], high-energy ball-milling [10], etc., have been used less frequently. However, all these methods present certain limitations. In fact, in the ball-milling process, it is impossible to control the shape of the nanoparticles and prevent their agglomeration, on the other hand, the reduction methods are multi-staged and highly sensitivite to extrinsic factors. In addition, the capping agents used for the shape control in the reduction methods [11] can deactivate the catalytic sites [12].

Therefore, the development of a simple and accessible method for producing catalysts with desired nanoparticle shapes and sizes has remained a challenge. In this study, we illustrate a lowcost, highly reproducible, one-step, capping agents-free, nontoxic

^{*} Corresponding author. Tel.: +7 9185524024; fax: +7 8632975120. *E-mail address*: i.leontiev@rambler.ru (I. Leontyev).

⁰⁹²⁶⁻⁸⁶⁰X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.apcata.2012.04.025