

Contents lists available at SciVerse ScienceDirect

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Review

A review of selective catalytic reduction of nitrogen oxides with hydrogen and carbon monoxide

Hideaki Hamada^{a,*}, Masaaki Haneda^b

- ^a Research Center for New Fuels and Vehicle Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- ^b Ceramics Research Laboratory, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu 507-0071, Japan

ARTICLE INFO

Article history: Received 7 December 2011 Received in revised form 28 January 2012 Accepted 3 February 2012 Available online 10 February 2012

Keywords:
Nitrogen oxide
Selective catalytic reduction
Hydrogen
Carbon monoxide
Platinum
Palladium
Iridium
Rhodium

ABSTRACT

The selective reduction of NO with hydrogen (H_2 -SCR) and CO (CO-SCR) over platinum group metal catalysts in the presence of O_2 is overviewed. In the case of H_2 -SCR, Pt and Pd show high activity at low temperatures. The acidity of the support material greatly affects NO reduction activity and selectivity to N_2/N_2O . Although the activity of Ir and Rh for H_2 -SCR is low, coexisting SO_2 in the reaction gas considerably promotes NO reduction. The best support for Ir and Rh is SiO_2 . Li and Zn additives improve the activity of Ir/SiO₂ and Rh/SiO₂, respectively, by maintaining the active reduced metal state. For CO-SCR, on the other hand, Ir is almost the only active metal species. Coexisting SO_2 is also essential for CO-SCR on Ir/SiO₂ to occur. The role of SO_2 for both H_2 -SCR and CO-SCR on Ir/SiO₂ is to keep Ir in the form of the catalytically active Ir metal state. The additions of $SiVO_3$ and $SiVO_4$ considerably promote the activity of Ir/SiO₂ for CO-SCR, catalyzing CO-SCR even in the absence of $SiVO_4$. Ir metal interacting strongly with $SiVO_4$ with $SiVO_4$ corresponded Ir/SiO₂. Furthermore, the addition of $SiVO_4$ and Inproves the performance of Ir/WO₃/SiO₂ catalyst.

© 2012 Elsevier B.V. All rights reserved.

Contents

1.	Introd	ductionduction	2	
2.	Select	Selective catalytic reduction with hydrogen (H ₂ -SCR)		
	2.1.	Pt catalysts	2	
		2.1.1. Catalytic activity	2	
		2.1.2. Effect of supports and additives	2	
	2.2.	Pd catalysts	4	
	2.3.	Ir and Rh catalysts	5	
3.	Selective catalytic reduction with carbon monoxide (CO-SCR)		7	
	3.1.	Catalytic activity	7	
	3.2.	Ir as an active species for CO-SCR	8	
	3.3.	Catalytically active state of Ir	ç	
	3.4.	Additive effect for Ir catalysts	ç	
	3.5.	Influence of coexisting gases	11	
		3.5.1. Effect of SO ₂	11	
		3.5.2. Effect of H_2O	11	
4.	Conclusions			
	Ackn	nowledgements	13	
	Refer	References 1		

^{*} Corresponding author. Tel.: +81 29 861 9329, fax: +81 29 861 4441. E-mail address: h.hamada@aist.go.jp (H. Hamada).