Contents lists available at SciVerse ScienceDirect

Applied Catalysis A: General

journal homepage: www.elsevier.com/locate/apcata

Selective hydrogenation of maleic anhydride to succinic anhydride catalyzed by metallic nickel catalysts

Yonghai Feng, Hengbo Yin*, Aili Wang, Tao Xie, Tingshun Jiang

Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

ARTICLE INFO

Article history: Received 19 January 2012 Received in revised form 14 March 2012 Accepted 15 March 2012 Available online 28 March 2012

Keywords: Hydrogenation Maleic anhydride Succinic anhydride Raney Ni Ni nanoparticles

ABSTRACT

Maleic anhydride was selectively hydrogenated to succinic anhydride over metallic nickel catalysts, such as Raney Ni and Ni nanoparticles, in liquid phase at reaction temperature lower than 130 °C. When the Raney Ni catalyst in solvents with different polarities catalyzed the hydrogenation of maleic anhydride to succinic anhydride, the solvent with high polarity favored the hydrogenation of maleic anhydride to succinic anhydride as compared to that with low polarity. When the hydrogenation reaction was catalyzed by Raney Ni catalyst at 100 $^{\circ}$ C and H₂ pressure of 2.5 MPa for 360 min in acetic anhydride, the conversion of maleic anhydride and the selectivity of succinic anhydride were 99.6% and 100%, respectively. In solvent-free reaction system, γ -butyrolactone as a byproduct with the maximum selectivity of 14.8% was produced at 130 °C. All of the Ni nanoparticles with average diameters ranging from 8 to 313 nm showed higher catalytic activity than Raney Ni in liquid phase hydrogenation of maleic anhydride to succinic anhydride. When the Ni nanoparticles with an average diameter of 8 nm were used as the catalysts in the liquid phase hydrogenation at 80 °C and 2 MPa of H₂ for 150 min and the weight ratio of catalyst to maleic anhydride was 1:100, the conversion of maleic anhydride and the selectivity of succinic anhydride were 99.8% and 100%, respectively. The small particle size and the polycrystalline structure of Ni nanoparticles played important roles in the liquid phase selective hydrogenation of maleic anhydride to succinic anhydride.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Maleic anhydride (MA) has been considered as a good feedstock since MA can be produced at a low cost and on a large scale by partial oxidation of *n*-butane instead of benzene now [1–3]. Catalytic hydrogenation of MA produces important industrial chemicals, such as succinic anhydride (SA), γ -butyrolacetone, tetrahydrofuran and 1,4-butanediol, which are widely used in polymer and pharmaceutical industries. From among the derivatives of MA, SA is typically used in the manufacturing of pharmaceuticals, agrochemicals, and polymers [4].

SA is traditionally produced by the dehydration of succinic acid, which is produced by electrochemical reduction of MA. Catalytic hydrogenation of MA to SA is an alternative to the traditional process, in viewpoint of lowering cost and environmental protection.

Hydrogenation of MA can be catalyzed by transition metals in both liquid and gas phases. It was reported that when Pd-Sn/SiO₂ [5], Pd/SiO₂ [6], and Pd-Mo-Ni/SiO₂ [7] catalyzed the liquid phase hydrogenation of MA at 220-260 °C and 5-8 MPa of H₂, γ -butyrolactone was dominantly formed. Supported copper catalysts, such as Cu/ZnO/Al₂O₃ [8–10], Cu/CeO₂/Al₂O₃ [11], Cu/ZnO/TiO₂ [12], and Cu/ZnO/ZrO₂ [13], favored the formation of γ -butyrolactone and tetrahydrofuran in the gas phase hydrogenation of MA at 220–280 °C and 0.03–1 MPa of H₂. High temperature and H₂ pressure are beneficial to the hydrogenation of MA to tetrahydrofuran *via* consecutive hydrogenation of MA to SA, SA to γ -butyrolactone, and γ -butyrolactone to tetrahydrofuran. SA is an intermediate product during the catalytic hydrogenation of MA since the double bonds in MA molecules are easily hydrogenated by H₂.

Several research groups investigated selective hydrogenation of MA to SA. When RhCl(PPh₃)₃ complex was used as the catalyst in ethylene glycol dimethylether, the yield of SA reached 99.0% at 110 °C and 2.5 MPa of H₂ [14]. When MA hydrogenation was carried out over Pd/Al₂O₃ in supercritical CO₂ medium, SA was dominantly formed at low temperature of 100 °C [15]. When Ru-Ni/SiO₂ was used as the catalyst in tetrahydrofuran at 240 °C and 7 MPa of H₂, SA was produced as the main product (73.2 wt%) in accompany with the formation of γ -butyrolactone and 1,4-butandiol [7]. In order to avoid the utilization of expensive noble metal catalysts were investigated in gas phase hydrogenation of MA and in fixed bed

^{*} Corresponding author. Tel.: +86 511 88787591; fax: +86 0 511 88791800. *E-mail address*: yin@ujs.edu.cn (H. Yin).

⁰⁹²⁶⁻⁸⁶⁰X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.apcata.2012.03.023