

A new four-step explicit method with vanished phase-lag and its derivatives \dots pp.: 1–5

A new four-step explicit method with vanished phase-lag and its derivatives for the numerical solution of radial Schrödinger equation

Ali Shokri, Azar Noshadi*and Roghayeh Norouzi Faculty of Mathematical Science, University of Maragheh, Maragheh, Iran.

Abstract

In this paper, we present a new method for the numerical solution of the timeindependent Schrödinger equation for one spatial dimension and related problems. A technique, based on the phase-lag and its derivatives, is used, in order to calculate the parameters of the new Numerov-type algorithm. We illustrate the accuracy and computational efficiency of the new developed method via numerical examples.

 ${\bf Keywords:}$ Multistep methods, Oscillating solution, Phase-lag, Initial value problems, Schrödinger equation

Mathematics Subject Classification [2010]: 65L05, 65L06

1 Introduction

The radial time- independent Shorödinger equation can be written as

$$y''(x) = \left(\frac{l(l+1)}{x^2} + V(x) - E\right)y(x),$$
(1)

where $\frac{l(l+1)}{x^2}$ is the centrifugal potential, V(x) is the potential, E is the energy and $W(x) = \frac{l(l+1)}{x^2} + V(x)$ is the effective potential. It is valid that $\lim_{x\to\infty} V(x) = 0$ and therefore $\lim_{x\to\infty} W(x) = 0$. We consider E > 0 and divide $[0,\infty)$ into subintervals $[a_i, b_i)$ so that W(x) is a constant with value \overline{W} . After this the problem (1) can be expressed by the approximation: $y''_i = (\overline{W} - E)y_i$, whose theoretical solution is $y_i = A_i \exp(\sqrt{\overline{W} - Ex}) + B_i \exp(\sqrt{\overline{W} - Ex})$, where A_i , $B_i \in \mathbb{R}$. Many numerical methods have been developed for the efficient solution of the Schrödinger equation and related problems [1 - 5].

2 Phase-lag analysis of symmetric multistep methods

For the numerical solution of the initial value problem

$$y'' = f(x, y), \quad y(x_0) = y_0, \quad y'(x_0) = y'_0,$$
(2)

 $^{^*}Speaker$