

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Higher nummerical ranges of basic A-factor block circulant matrix

Higher nummerical ranges of basic A-factor block circulant matrix

Mohammad Ali Nourollahi Ravari^{*} Higher Education Complex of Bam

Abstract

In this paper, using the notion of k-numerical range, the relation between k-numerical range of matrix polynomials and the k-numerical range of its linearization are investigated. Moreover, the k-numerical ranges of basic circulant A-factor matrix are studied.

Keywords: *k*-numerical range, matrix polynomial, companion linearization, basic *A*-factor block circulant matrix **Mathematics Subject Classification [2010]:** 15A60, 15A18, 47A56

1 Introduction

Let k and n are positive integers, \mathbb{M}_n be the algebra of all $n \times n$ complex matrices, The set of all $n \times k$ isometry matrices is denoted by $\mathcal{X}_{n \times k}$, i.e., $\mathcal{X}_{n \times k} = \{X \in \mathbb{M}_{n \times k} : X^*X = I_k\}$ and the group of $n \times n$ unitary matrices is denoted by \mathcal{U}_n . The k-numerical range of $A \in \mathbb{M}_n$ is defined and denoted by $W_k(A) = \{\frac{1}{k}tr(X^*AX) : X \in \mathcal{X}_{n \times k}\}$, where tr(.)denotes the trace. The sets $W_k(A)$, where $k \in \{1, 2, \ldots, n\}$, are generally called higher numerical ranges of A. Let $A \in \mathbb{M}_n$ have eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, counting multiplicities. The set of all k-averages of eigenvalues of A is denoted by $\sigma^{(k)}(A)$, namely,

$$\sigma^{(k)}(A) = \{ \frac{1}{k} \left(\lambda_{i_1} + \lambda_{i_2} + \dots + \lambda_{i_k} \right) : 1 \le i_1 < i_2 < \dots < i_k \le n \}.$$

Proposition 1.1. Let $A \in \mathbb{M}_n$. Then the following assertions are true: (i) $W_k(A)$ is a compact and convex set in \mathbb{C} ;

(ii) $conv(\sigma^{(k)}(A)) \subseteq W_k(A)$, The equality holds if A is normal;

(*iii*) $\{\frac{1}{n}tr(A)\} = W_n(A) \subseteq W_{n-1}(A) \subseteq \cdots \subseteq W_2(A) \subseteq W_1(A) = W(A);$

(iv) If $V \in \mathcal{X}_{n \times s}$, where $k \leq s \leq n$, then $W_k(V^*AV) \subseteq W_k(A)$. The equality holds if s = n, i.e., $W_k(U^*AU) = W_k(A)$, where $U \in \mathcal{U}_n$;

(v) For any $\alpha, \beta \in \mathbb{C}$, $W_k(\alpha A + \beta I_n) = \alpha W_k(A) + \beta$, and for the case k < n, $W_k(A) = \{\alpha\}$ if and only if $A = \alpha I_n$;

^{*}Speaker