

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Function-valued Gram-Schmidt process in $L_2(0,\infty)$

Function-valued Gram-Schmidt process in $L_2(0,\infty)$

Mohammad Ali Hasankhani Fard* Vali-e-Asr University of Rafsanjan

Abstract

In this paper, we will look at the Gram-Schmidt process corresponding to a function valued inner product in $L_2(0, \infty)$.

Keywords: function-valued inner product, function-valued norm, function-valued orthogonal, Gram-Schmidt process.

Mathematics Subject Classification [2010]: 42C15

1 Introduction

A function-valued inner product on $L_2(0,\infty)$ by using of the dilation operator and its application in dilation-invariant systems has been introduced in [3]. Fix a > 1. For each pair $f, g \in L_2(0,\infty)$, the function $\langle f, g \rangle_a$ on $(0,\infty)$ is defined by

$$\langle f,g\rangle_a\left(x\right):=\sum_{j\in\mathbb{Z}}a^jf(a^jx)\overline{g(a^jx)}$$

and is called function-valued inner product on $L_2(0,\infty)$ with respect to a. It is easy to show that $\langle f,g \rangle = \int_1^a \langle f,g \rangle_a(x) dx$, where $\langle .,. \rangle$ is the original inner product in $L_2(0,\infty)$. Also, the function-valued norm on $L_2(0,\infty)$ with respect to a is defined by

$$||f||_a(x) := \sqrt{\langle f, f \rangle_a(x)}, \quad \forall f \in L_2(0,\infty) \quad and \quad \forall x \in (0,\infty).$$

The function ϕ on $(0, \infty)$ is called dilation periodic function with period a if $\phi(ax) = \phi(x)$ for all $x \in (0, \infty)$. The set of bounded dilation periodic functions on $(0, \infty)$ is denoted by B_a . For any function ϕ on [1, a], the function ϕ defined by $\phi(a^j x) = \phi(x)$, for all $j \in \mathbb{Z}$ and $x \in [1, a]$ is dilation periodic. Throughout this paper, let ϕ be the dilation periodic function defined as above for any complex function ϕ on [1, a]. A function f defined on $(0, \infty)$ is called function-valued bounded respect to a, or simply function-valued bounded, if there is a B > 0 such that $||f||_a(x) \leq B$ for almost all $x \in [1, a]$. The set of functionvalued bounded functions denote by $L_a^{\infty}(0, \infty)$.

The properties of the function-valued inner product are given in the next theorem.

^{*}Speaker