

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Pivoting strategy for an ILU preconditioner

Pivoting strategy for an ILU preconditioner

A. Rafiei^{*} Hakim Sabzevari University Mahdi Mohseni and Fatemeh Rezaei Fazel[†] Hakim Sabzevari University

Abstract

In this paper, a complete pivoting strategy for the right-looking version of RIF-NS preconditioner is presented.

Keywords: preconditioning, pivoting, right-looking version of RIF - NS preconditioner

Mathematics Subject Classification [2010]: 65F10, 65F50, 65F08.

1 Introduction

Consider the linear system of equations of the form Ax = b, where the coefficient matrix $A \in \mathbb{R}^{n \times n}$ is nonsingular, large, sparse and nonsymmetric and also $x, b \in \mathbb{R}^n$. An *ILU* preconditioner M of this system is in the form of $M = LDU \approx A$. This preconditioner will change the original system to the left preconditioned system $M^{-1}Ax = M^{-1}b$. For a proper preconditioner, instead of solving the original system, it is better to solve the left preconditioned system by the Krylov subspace methods [3]. In [1], we have proposed an *ILU* preconditioner for system Ax = b. This preconditioner is termed the *RIF - NS* and has two left- and right-looking versions.

2 Pivoting strategy for the right-looking RIF - NS preconditioner

Algorithm 1, uses the complete pivoting strategy to compute the right-looking version of RIF - NS preconditioner. Here we explain the step *i* of this algorithm. At the beginning of this step, $\Pi = \Pi_{i-1}...\Pi_1$ and $\Sigma = \Sigma_1...\Sigma_{i-1}$ are the row and the column permutation matrices, respectively. For k < i, the matrices Π_k and Σ_k are the row and the column permutation matrices associated to step *k* of this algorithm. At the beginning of this step, the parameters m_i , n_i , *iter*, *satisfied_p* and *satisfied_q* are initialized in line 3. At the end of this step, m_i and n_i will be the total number of row and column pivoting associated to step *i*. The parameter *iter* is used to compute the pivot entry in this step. *satisfied_p* (*satisfied_q*) shows whether or not we need to the row (column) pivoting strategy. In line 7 of the algorithm, the vector $(q_i^{(i-1)}, \cdots, q_n^{(i-1)})$ is computed. Suppose that $|q_k^{(i-1)}| = max_{m \ge i+1} |q_m^{(i-1)}|$. If the criterion $|q_i^{(i-1)}| < \alpha |q_k^{(i-1)}|$ is satisfied for

^{*}rafiei.am@gmail.com, a.rafiei@hsu.ac.ir.

 $^{\ ^{\}dagger} Speaker, mmohsenidehsorkh@yahoo.com, rezaeefazel@gmail.com$