

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Multiwavelets Galerkin method for solving linear control systems

Multiwavelets Galerkin method for solving linear control systems

Behzad Nemati Saray

Young Researchers and Elite Clube, Marand Branch, Islamic Azad University, Marand, Iran

Farid Heidarpoor^{*} Seyed Mahdi Karbasi Department of Mathematics, Yazd University, Yazd, Iran

Abstract

In this paper a numerical technique is proposed for solving linear control systems. Multiwavelets Galerkin method is applied for solving the extreme conditions obtained from the Pontryagin's maximum principle.

Keywords: Multiwavelets, Galerkin method, Linear control systems Mathematics Subject Classification [2010]: 42C40, 37L65, 93Cxx

1 Introduction

Optimal control theory has many successful practical applications in areas ranging from economics to various engineering disciplines. The optimal control problem has been studied by many researchers [1]. In this paper, we consider linear optimal problem (OCP)

$$\dot{x} = Ax(t) + Bu(t), x(t_0) = x_0, J = \frac{1}{2}x(t_f)^T Sx(t_f) + \frac{1}{2} \int_{t_0}^{t_f} (x^T P x + 2x^T Q u + u^T R u) dt,$$
(1)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times n}$. The control u(t) is an admissible control if it is piecewise continuous in t for $t \in [t_0, t_f]$. The input u(t) is derived by minimizing the quadratic performance index J, where $S \in \mathbb{R}^{n \times n}$, $P \in \mathbb{R}^{n \times n}$ and $Q \in \mathbb{R}^{n \times m}$ are positive semi-definite matrices and $R \in \mathbb{R}^{m \times m}$ is positive definite matrix.

2 Optimality conditions for linear optimal control system

In this section, we try to get the optimal control law $u^*(t) = -k(t)x(t)$ for system (1) by using PMP [2]. For this purpose, one can consider Hamiltonian as

$$H(x, u, \lambda, t) = \frac{1}{2} (x^T P x + 2x^T Q u + u^T R u) + \lambda^T (A x + B u),$$
(2)

*Speaker