

 $46^{\rm th}$ Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

C*-algebras of Toeplitz and composition operators

C^* -algebras of Toeplitz and composition operators

Massoud Salehi Sarvestani^{*} University of Tarbiat Modares

Abstract

We investigate the unital C^* -algebras generated by an irreducible Toeplitz operator T_{ψ} and one or more composition operators C_{φ} induced by linear-fractional self-maps φ of the unit disk acting on the Hardy space H^2 , modulo the ideal of compact operators $K(H^2)$. For automorphism symbol φ , we compare this algebra with the one generated by the shift operator T_z and a composition operators.

Keywords: the unilateral shift operator, Toeplitz operator, composition operator, linear-fractional map, automorphism of the unit disk. **Mathematics Subject Classification [2010]:** 47B33, 47B32

1 Introduction

The Hardy space $H^2 = H^2(\mathbb{D})$ is the collection of all analytic functions f on the open unit disk \mathbb{D} satisfying the norm condition $||f||^2 := \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty$. For any analytic self-map φ of the open unit disk \mathbb{D} , a bounded composition operator on H^2 is defined by

 $C_{\varphi}: H^2 \to H^2, \quad C_{\varphi}(f) = f \circ \varphi.$

If $f \in H^2$, then the radial limit $f(e^{i\theta}) := \lim_{r \to 1} f(re^{i\theta})$ exists almost everywhere on the unit circle \mathbb{T} . Hence we can consider H^2 as a subspace of $L^2(\mathbb{T})$. Let ϕ is a bounded measurable function on \mathbb{T} and P_{H^2} be the orthogonal projection of $L^2(\mathbb{T})$ (associated with normalized arc-length measure on \mathbb{T}) onto H^2 . The Toeplitz operator T_{ϕ} is defined on H^2 by $T_{\phi}f = P_{H_2}(\phi f)$ for all $f \in H^2$. Coburn in [2] shows that the quotient of the unital C^* -algebra $C^*(T_z)$ generated by the unilateral shift operator T_z on the ideal of compact operators $\mathfrak{K} = K(H^2)$ is *-isomorphic to $C(\mathbb{T})$, and determines essential spectrum of Toeplitz operators with continuous symbol. Recently the unital C^* -algebra generated by the shift operator T_z and the composition operator C_{φ} for a linear-fractional self-map φ of \mathbb{D} is studied. For a linear-fractional self-map φ on \mathbb{D} , if $\|\varphi\|_{\infty} < 1$ then C_{φ} is a compact operator on H^2 . Therefore we consider those linear-fractional self-maps φ which satisfy $\|\varphi\|_{\infty} = 1$. If moreover φ is an automorphism of \mathbb{D} , then $C^*(T_z, C_{\varphi})/\mathfrak{K}$ is *-isomorphic to the crossed products $C(\mathbb{T}) \rtimes_{\varphi} \mathbb{Z}$ or $C(\mathbb{T}) \rtimes_{\varphi} \mathbb{Z}_n$ [4]. When φ is not an automorphism there are three different cases:

(i) φ has only one fixed point γ which is on the unit circle \mathbb{T} (i.e. φ is a parabolic map) [7]. In this case, $C^*(T_z, C_{\varphi})/\mathfrak{K}$ is a commutative C^* -algebra isomorphic to $C_{\gamma}(\mathbb{T}) \oplus C_0([0, 1])$, where $C_{\gamma}(\mathbb{T})$ is the set of functions in $C(\mathbb{T})$ vanishing at $\gamma \in \mathbb{T}$.

^{*}Speaker