

46th Annual Iranian Mathematics Conference 25-28 August 2015

25-28 August 2015

Yazd University

Some μ -fixed point theorems for μ -continuous Maps on σ -algebras

Some μ -Fixed Point Theorems for μ -continuous Maps on σ -algebras

Mohammad Javad Mehdipour* Shiraz University of Technology Zohre Shakiba Shiraz University of Technology

Abstract

Let μ be a positive finite measure on a σ -algebra \mathcal{A} . In this paper, we introduce the concept of μ -fixed point for mappings $f : \mathcal{A} \to \mathcal{A}$ and obtain conditions for the existence of common μ -fixed points of such mappings. We show that for any μ -complete measure space if there exist $m \in \mathbb{N}$ and $0 \le k < 1$ such that for every $A \in \mathcal{A}, \mu(f^m(A)) \le k \mu(A)$, then all $\{f^n\}_{n \in \mathbb{N}}$ have a unique common μ -fixed point.

Keywords: fixed point theorem, contraction mapping, measure **Mathematics Subject Classification [2010]:** 47H10, 47H09

1 Introduction

Schauder fixed point theorem states that any compact map from a nonempty, closed, convex, bounded subset E of a Banach space into itself has a fixed point in E [3]. Darbo [4] extended Schauder's fixed point theorem to the setting of noncompact operators by using the concept of $\alpha - k$ -set contraction, where $0 \le k < 1$ and α denotes the Kuratowski measure of noncompactness [6]. In fact, he proved the following theorem.

Theorem 1.1. Let X be a nonempty, closed, bounded and convex subset of a Banach space and $f: X \to X$ be a bounded continuous map with

$$\alpha(f(B)) \le k \; \alpha(B)$$

for all bounded subsetes B of X, where $0 \le k < 1$. Then f has a fixed point.

Sadovski [7] proved that above theorem is true for a bounded continuous map f such that

$$\alpha(f(B)) \le \alpha(B)$$

for all bounded subsets B of X with $\alpha(B) > 0$. Banas [2] proved a fixed point result using the concept of $\beta - k$ -set contraction, where $0 \le k < 1$ and β denotes the De Blasi measure of weak noncompactness [5]. Amini-Harandi, Fakhar and Zafarani [1] have introduced a type of generalized set contraction in topological spaces with respect to a measure of noncompactness and proved a fixed point theorem which are either generalized set contraction or condensing ones.

^{*}Speaker