

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Solving nonlinear fuzzy differential equations by the Adomian-Tau method pp:: 1-4

Solving nonlinear fuzzy differential equations by the Adomian-Tau method

Tayebeh Aliabdoli Bidgoli * Shahid Bahonar University of Kerman

Abstract

In this paper, a numerical method for nonlinear fuzzy differential equations is presented. The method is based on Adomian-Tau method. Numerical examples are presented to verify the efficiency and accuracy of the proposed method.

Keywords: fuzzy differential equation, generalized differentiable, Adomian-Tau method. **Mathematics Subject Classification [2010]:** 34A07

1 preliminary

In this section, we present definitions and concepts that need in throughout papers.

Let us denote by $\mathbb{R}_{\mathcal{F}}$ the class of fuzzy subsets of the real axis $u : \mathbb{R} \to [0, 1]$, such that u is normal, upper semicontinuous and convex fuzzy set with compact support. Then $\mathbb{R}_{\mathcal{F}}$ is called the space of fuzzy numbers. For $0 < \alpha \leq 1$, denote $[u]^{\alpha} = \{x \in \mathbb{R}; u(x) \geq \alpha\}$ and $[u]^0 = \{x \in \mathbb{R}; u(x) > 0\}$. Then it is well- known that for any $\alpha \in [0, 1], [u]^{\alpha}$ is a bounded closed interval. For $u, v \in \mathbb{R}_{\mathcal{F}}$, and $\lambda \in \mathbb{R}$, the sum u + v and the product $\lambda.u$ are defined by $[u + v]^{\alpha} = [u]^{\alpha} + [v]^{\alpha}, [\lambda.u]^{\alpha} = \lambda[u]^{\alpha}, \forall \alpha \in [0, 1]$, where $[u]^{\alpha} + [v]^{\alpha} = \{x + y : x \in [u]^{\alpha}, y \in [v]^{\alpha}\}$ means the usual addition of two intervals of \mathbb{R} and $\lambda[u]^{\alpha} = \{\lambda x : x \in [u]^{\alpha}\}$ means the usual product between a scalar and a subset of \mathbb{R} .

Let $D : \mathbb{R}_{\mathcal{F}} \times \mathbb{R}_{\mathcal{F}} \to \mathbb{R}^+ \cup \{0\}, \ D(u,v) = \sup_{\alpha \in [0,1]} \max\{|\underline{u}^{\alpha} - \underline{v}^{\alpha}|, |\overline{u}^{\alpha} - \overline{v}^{\alpha}|\}, \text{ be the Hausdorff distance between fuzzy numbers, where } [u]^{\alpha} = [\underline{u}^{\alpha}, \overline{u}^{\alpha}], \ [v]^{\alpha} = [\underline{v}^{\alpha}, \overline{v}^{\alpha}].$ The following properties are well-known

- $D(u+w,v+w) = D(u,v), \quad \forall u,v,w \in \mathbb{R}_{\mathcal{F}},$
- $D(k.u, k.v) = |k|D(u, v), \quad \forall k \in \mathbb{R}, u, v \in \mathbb{R}_{\mathcal{F}},$
- $D(u+v, w+e) \leq D(u, w) + D(v, e), \forall u, v, w, e \in \mathbb{R}_{\mathcal{F}},$

and $(\mathbb{R}_{\mathcal{F}}, D)$ is a complete metric space.

Definition 1.1. Let $x, y \in \mathbb{R}_{\mathcal{F}}$. If there exist $z \in \mathbb{R}_{\mathcal{F}}$ such that x = y + z, then z is called the H- difference of x and y and it is denoted by $x \ominus y$.

In this paper the " \ominus " sign stands always for H- difference and let us remark that $x \ominus y \neq x + (-1)y$.

Definition 1.2. [1] Let $f: (a, b) \to \mathbb{R}_{\mathcal{F}}$ and $x_0 \in (a, b)$, then f is strongly generalized differential on x_0 , if there exists an element $f'(x_0) \in \mathbb{R}_{\mathcal{F}}$, such that

^{*}Speaker