

46<sup>th</sup> Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University



Some inequalities for the numerical radius of operators

## SOME INEQUALITIES FOR THE NUMERICAL RADIUS OF OPERATORS

Mostafa Sattari<sup>\*</sup> Ferdowsi University of Mashhad Mohammad Sal Moslehian Ferdowsi University of Mashhad

## Abstract

In this talk, we provide a generalization of a numerical radius inequality including product of two operators on a Hilbert space which is sharper than original inequality in a particular position. An application of this inequality to prove a numerical radius inequality that involves the generalized Aluthge transform is also given. In addition, our results generalize some known inequalities. For any  $A, B, X \in \mathcal{B}(H)$  such that  $A, B \geq 0$ , we prepare new estimation for the numerical radius of two terms  $A^{\alpha}XB^{\alpha}$ ,  $A^{\alpha}XB^{1-\alpha}$  ( $0 \leq \alpha \leq 1$ ) and Heinz means. Other related inequalities are also discussed.

**Keywords:** Positive operator, numerical radius, Heinz means, Aluthge transform. **Mathematics Subject Classification [2010]:** 47A12, 47A30, 47A63 47B47.

## 1 Introduction

Recall that an operator  $A \in \mathcal{B}(H)$  is called positive, denote by  $A \ge 0$ , if  $\langle Ax, x \rangle \ge 0$  for all  $x \in H$ . The numerical radius of  $A \in \mathcal{B}(H)$  is defined by

$$w(A) = \sup\{|\lambda| : \lambda \in W(A)\},\$$

where W(A) is the numerical range of A defined by  $W(A) = \{\langle Ax, x \rangle : x \in \mathcal{H}, ||x|| = 1\}$ . For a comprehensive account of theory of the numerical range and numerical radius we refer the reader to [2].

It is well known that  $w(\cdot)$  defines a norm on  $\mathcal{B}(H)$  such that for all  $A \in \mathcal{B}(H)$ ,

$$\frac{1}{2}\|A\| \le w(A) \le \|A\|.$$
(1)

On the second inequality in (1), Kittaneh [3] has shown that if  $A \in \mathcal{B}(H)$ , then

$$w(A) \le \frac{1}{2} (\|A\| + \|A^2\|^{\frac{1}{2}}).$$
(2)

Obviously, inequality (2) is sharper than the second inequality of (1). Inequalities (1) are sharp. If  $A^2 = 0$ , then  $w(A) = \frac{1}{2}||A||$ , while if A is normal, then w(A) = ||A||. For  $A \in \mathcal{B}(H)$ , let A = U|A| be the polar decomposition of A, the Aluthge

<sup>\*</sup>Speaker