

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

pp.: 1–4

Generalized weighted composition operators between Zygmund spaces and ...

Generalized weighted composition operators between Zygmund spaces and Bloch spaces

Mostafa Hassanlou*

Shahid Bakeri High Education Center of Miandoab, Urmia University

Amir H. Sanatpour Kharazmi University (Tarbiat Moallem University)

Abstract

For the analytic selfmap φ and analytic function u on the open unit ball of the complex plane, we investigate generalized weighted composition operators

$$\left(D_{\varphi,u}^kf\right)(z) = u(z)f^{(k)}(\varphi(z)),$$

between weighted Zygmund spaces and weighted Bloch spaces.

Keywords: Generalized weighted composition operators, Weighted composition operators, Weighted Zygmund spaces, Weighted Bloch spaces. **Mathematics Subject Classification [2010]:** 47B38, 46E15.

1 Introduction

Let \mathbb{D} be the open unit ball in \mathbb{C} and u and φ be analytic functions on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. For a nonnegative integer k, the generalized weighted composition operator $D_{\varphi,u}^k$ on $H(\mathbb{D})$, the space of all analytic functions on \mathbb{D} , is defined by

$$\left(D_{\varphi,u}^k f\right)(z) = u(z)f^{(k)}(\varphi(z)), \quad z \in \mathbb{D}.$$

Generalized weighted composition operators are generalization of well-known weighted composition operators uC_{φ} defined by

$$(uC_{\varphi}f)(z) = u(z)f(\varphi(z)), \quad z \in \mathbb{D},$$

and also generalization of some other known operators. In this paper, we consider generalized weighted composition operators between *weighted Zygmund spaces* and *weighted Bloch spaces* defined as follows.

By a weight function we mean a continuous, strictly positive and bounded function $\nu : \mathbb{D} \to \mathbb{R}_+$. The weight ν is called *radial* if $\nu(z) = \nu(|z|)$ for all $z \in \mathbb{D}$. For a weight ν , the weighted Banach space of analytic functions on \mathbb{D} is defined as

$$H_{\nu}^{\infty} = \left\{ f \in H(\mathbb{D}) : \|f\|_{\nu} = \sup_{z \in \mathbb{D}} \nu(z) |f(z)| < \infty \right\}.$$

^{*}Speaker