

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Exist and uniqueness of *p*-best approximation in fuzzy normed spaces

Exist and uniqueness of p-best approximation in fuzzy normed spaces

Fatemeh Hemati * Yazd University Hamid Mazahri Yazd University

Abstract

In this paper, we define a fuzzy normed space and study the concept of p-best approximation in fuzzy normed spaces. We also define a p-proximal set and p-Chebyshev set and prove some interesting results in this newsetup.

 $\label{eq:keywords: Fuzzy Normed Spaces; p-Best Approximation; p-Proximal Set; p-Chebyshev Set.}$

Mathematics Subject Classification [2010]: 03Bxx, 90C59

1 Introduction

In this section we recall some notations and basic definitions used in this paper. A function $f : \mathbb{R} \to \mathbb{R}_0^+ = [0, 1]$ is called a distribution function if it is non-decreasing and left continuous with $\inf_{t \in \mathbb{R}} f(t) = 0$ and $\sup_{t \in \mathbb{R}} f(t) = 1$. By D^+ , we denote the set of all distribution functions such that f(0) = 0. If $a \in \mathbb{R}_0^+$, then $H_a \in D^+$, where

$$H_a(t) = \begin{cases} 1 & t > a, \\ 0 & t \le a. \end{cases}$$

A *t*-norm is a continuous mapping $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ such that ([0, 1], *) is an abelian monoid with unit one and $a * b \le c * d$ if $a \le c$ and $b \le d$ for all $a, b, c \in [0, 1]$.

Definition 1.1. Let X be a linear space of a dimension greater than one, * a t-norm continuous, and let N be a mapping from $X \times \mathbb{R}$ into D^+ . The following conditions are satisfied for all $x, y \in X$ and t, s > 0,

(i) $N(x;t) = H_0(t)$ if and only if $x = \theta$ (θ is the null vector in X),

(ii) $N(\alpha x; t) = N(x; \frac{t}{|\alpha|})$ for all t in \mathbb{R}^+ ,

(iii) $N(x+y;t+s) \ge N(x;t) * N(y;s).$

Triple (X, N, *) is called a fuzzy normed space. If in addition, t > 0, $(x) \to N(x;t)$ is a continuous map on X, then (X, N, *) is called a strong fuzzy normed space.

^{*}Speaker