

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

An extension of $C_F(X)$

An extension of $C_F(X)$

Mehrdad Namdari Shahid Chamran University of Ahvaz Somayeh Soltanpour^{*} Petroleum University of Technology

Abstract

Let $C_F(X)$ be the socle of C(X) (i.e., the sum of minimal ideals of C(X)). We define $LC_F(X) = \{f \in C(X) : \overline{S_f} = X\}$, where S_f is the union of all open subsets Uin X such that $|U \setminus Z(f)| < \infty$, $LC_F(X)$ is called the locally socle of C(X) and it is a z-ideal of C(X) containing $C_F(X)$. We characterize spaces X for which the equality in the relation $C_F(X) \subseteq LC_F(X) \subseteq C(X)$ is hold. We determine the conditions such that $LC_F(X)$ is not prime in any subrings of C(X) which contains the idempotents of X. We investigate the primess of $LC_F(X)$ in some subrings of C(X).

Keywords: Socle, Locally socle, Compact space, Prime ideal, Scattered space.
Mathematics Subject Classification [2010]: Primary: 54C30, 54C40, 54C05, 54G12; Secondary: 13C11, 16H20.

1 Introduction

C(X) denotes the ring of all real valued continuous functions on a topological space X. We recall that a nonzero ideal E in a commutative ring R is called essential if it intersects every nonzero ideal nontrivially. Let I be an ideal in C(X), then $Z[I] = \{Z(f) : f \in I\}$ and $Z(X) = \{Z(f) : f \in C(X)\}$. If $Z^{-1}[Z[I]] = I$, then I is called a z-ideal. Let $C_{c}(X) = \{f \in C(X) : |f(X)| \leq \aleph_{0}\}$ and $C^{F}(X) = \{f \in C(X) : |f(X)| < \infty\}$, see [6] and [7]. The socle of C(X) (i.e., $C_F(X)$) which is in fact a direct sum of minimal ideals of C(X) is characterized topologically in [10, Proposition 3.3], and it turns out that $C_F(X) = \{f \in C(X) : |X \setminus Z(f)| < \infty\}$ is a useful object in the context of C(X), see [10], [1], [5], [2], and [3]. This motivates us to investigate the locally socle of C(X). We define $LC_F(X) = \{f \in C(X) : \overline{S_f} = X\}$, where S_f is the union of all open subsets U in X such that $|U \setminus Z(f)| < \infty$, $LC_F(X)$ is called the locally socle of C(X) and it is a z-ideal of C(X) containing $C_F(X)$. We characterize spaces X for which the equality in the relation $C_F(X) \subseteq LC_F(X) \subseteq C(X)$ holds. In fact, we show that X is an almost discrete space if and only if $LC_F(X) = C(X)$. We note that if X is an infinite space, then $C_F(X) \subseteq C(X)$. We also observe that $|I(X)| < \infty$ if and only if $C_F(X) = LC_F(X)$. Moreover, it is shown that if $|I(X)| < \infty$, then $LC_F(X)$ is never essential in any subring of C(X), while $LC_F(X)$ is an intersection of essential ideals of C(X). We determine the conditions such that $LC_F(X)$ is not prime in any subrings of C(X) which contains the idempotents of X. We investigate the primness of $LC_F(X)$ in some subrings of C(X). All

^{*}Speaker