

$46^{\rm th}$ Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Talk

A note on an ideal of C(X) with λ - compact support

pp.: 1-4

A note on an ideal of C(X) with λ - compact support

Simin Mehran*
Shoushtar Branch Islamic Azad University, Shoushtar, Iran

Abstract

We introduce and investigate some properties of the set of functions in C(X) with λ -compact support which is denoted by $C_K^{\lambda}(X)$, where λ is an infinite regular cardinal number. We extend some of the basic results concerning $C_K(X)$ (i.e., the family of all elements of C(X) having compact support) for $C_K^{\lambda}(X)$. For instance, the purity of $C_K^{\lambda}(X)$ is studied and characterized through P_{λ} -spaces and λ -locally compact spaces which are not λ -compact. Finally some relations between topological properties of the space X and algebraic properties of the ideal $C_K^{\lambda}(X)$ are investigated.

Keywords: λ -compact, support, purity, λ -locally compact.

Mathematics Subject Classification [2010]: Primary: 54C30, 54C40, 54C05,

54G12; Secondary: 13C11, 16H20.

1 Introduction

Let C(X) be the ring of all continuous real-valued functions on a completely regular Hausdorff space X. Throughout this article ideals are assumed to be proper ideals. For each $f \in C(X)$, let $Z(f) = \{x \in X : f(x) = 0\}$ and $coz f = X \setminus Z(f)$. If I is an ideal of C(X), we put $coz I = \bigcup_{f \in I} coz f$. The support of f is the closure of $X \setminus Z(f)$ and $C_K(X)$ is the set of functions in C(X) with compact support, see [4]. The concept λ -compact in [5] and [7], motivates us to introduce $C_K^{\lambda}(X)$. Our main purpose in this article is the study of the ideal structure of $C_K^{\lambda}(X)$ and of the relation between topological properties of the subspaces of X and algebraic properties of the ideal $C_K^{\lambda}(X)$. The space X is called λ -compact whenever each open cover of X can be reduced to an open cover of X whose cardinality is less than λ , where λ is the least infinite cardinal number with this property. We remind that the space X is P_{λ} -spaces if and only if every intersection with cardinality less than λ of open sets (i.e., G_{λ} -set) be open. The space X is called λ -locally compact space whenever every element of X has a λ -compact neighborhood, see [7]. For undefined terms and notations the reader is referred to [3] and [4].

2 Functions in C(X) with λ -compact support

V	Ve	need	the	tol	lowing	de	finitior	ı.
---	----	------	-----	-----	--------	----	----------	----

^{*}Speaker