

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Roman k-domination number upon vertex and edge removal

Roman k-Domination Number Upon Vertex and Edge Removal

Hamid Reza Golmohammadi [*]
University of Tafresh
Seyed Mehdi Hosseini Moghaddam
Azad University of Qom

Arezoo N. Ghameshlou University of Tehran

> Lutz Volkmann RWTH Aachen University

Abstract

Let $k \ge 1$ be an integer. A Roman k-dominating function on a graph G with vertex set V is a function $f: V \to \{0, 1, 2\}$ such that every vertex $v \in V$ with f(v) = 0 has at least k neighbors u_1, u_2, \dots, u_k with $f(u_i) = 2$ for $i = 1, 2, \dots, k$. The weight of a Roman k-dominating function is the value $f(V) = \sum_{v \in V} f(v)$. The minimum weight of Roman k-dominating functions on a graph G is called the Roman k-domination number, denoted by $\gamma_{kR}(G)$. In this paper, we consider the effects of vertex and edge removal on the Roman k-domination number of a graph. Some of our results improve these one given by Kämmerling and Volkmann in [6] for the Roman k-domination number.

Keywords: Roman domination, Roman k-domination number, Roman k-dominating function.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

For terminology and notation on graph theory not given here, the reader is referred to [5, 10]. In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| and the size |E| are denoted by n = n(G) and m = m(G). For disjoint subsets A and B of vertices we denote by E(A, B) the set of edges between A and B. The open and closed neighborhoods of a vertex $v \in V$ are $N_G(v) = \{u \in V | uv \in E\}$ and $N_G[v] = N_G(v) \cup \{v\}$, respectively. Also the open and closed neighborhoods of a subset $S \subseteq V(G)$ are $N_G(S) = \bigcup_{v \in S} N_G(v)$ and $N_G[S] = N_G(S) \cup S$, respectively. The degree of a vertex $v \in V$ is $deg_G(v) = |N_G(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a subset $S \subseteq V(G)$, the induced subgraph G[S] is the subgraph of G with the vertex set S and for two vertices $u, v \in S$, $uv \in E(G[S])$ if and only if $uv \in E(G)$. We write $K_{p,q}$ for the complete bipartite graph with bipartition X and Y such |X| = p and |Y| = q. If $\omega(G)$ is the number of components of G, then $c(G) = m - n + \omega(G)$ is the well-known cyclomatic number of G.

^{*}Speaker