$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
pp.: 1-4

# Roman $k$-Domination Number Upon Vertex and Edge Removal 

Hamid Reza Golmohammadi*<br>University of Tafresh<br>Seyed Mehdi Hosseini Moghaddam<br>Azad University of Qom

Arezoo N. Ghameshlou<br>University of Tehran<br>Lutz Volkmann<br>RWTH Aachen University


#### Abstract

Let $k \geq 1$ be an integer. A Roman $k$-dominating function on a graph $G$ with vertex set $V$ is a function $f: V \rightarrow\{0,1,2\}$ such that every vertex $v \in V$ with $f(v)=0$ has at least $k$ neighbors $u_{1}, u_{2}, \cdots, u_{k}$ with $f\left(u_{i}\right)=2$ for $i=1,2, \cdots, k$. The weight of a Roman $k$-dominating function is the value $f(V)=\sum_{v \in V} f(v)$. The minimum weight of Roman $k$-dominating functions on a graph $G$ is called the Roman $k$-domination number, denoted by $\gamma_{k R}(G)$. In this paper, we consider the effects of vertex and edge removal on the Roman $k$-domination number of a graph. Some of our results improve these one given by Kämmerling and Volkmann in [6] for the Roman $k$-domination number.


Keywords: Roman domination, Roman $k$-domination number, Roman $k$-dominating function.
Mathematics Subject Classification [2010]: 13D45, 39B42

## 1 Introduction

For terminology and notation on graph theory not given here, the reader is referred to [5, 10]. In this paper, $G$ is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ and the size $|E|$ are denoted by $n=n(G)$ and $m=m(G)$. For disjoint subsets $A$ and $B$ of vertices we denote by $E(A, B)$ the set of edges between $A$ and $B$. The open and closed neighborhoods of a vertex $v \in V$ are $N_{G}(v)=\{u \in V \mid u v \in E\}$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$, respectively. Also the open and closed neighborhoods of a subset $S \subseteq V(G)$ are $N_{G}(S)=\cup_{v \in S} N_{G}(v)$ and $N_{G}[S]=N_{G}(S) \cup S$, respectively. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degree of a graph $G$ are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a subset $S \subseteq V(G)$, the induced subgraph $G[S]$ is the subgraph of $G$ with the vertex set $S$ and for two vertices $u, v \in S$, $u v \in E(G[S])$ if and only if $u v \in E(G)$. We write $K_{p, q}$ for the complete bipartite graph with bipartition $X$ and $Y$ such $|X|=p$ and $|Y|=q$. If $\omega(G)$ is the number of components of $G$, then $c(G)=m-n+\omega(G)$ is the well-known cyclomatic number of $G$.

[^0]
[^0]:    *Speaker

