

Pseudonumerical range of matrices

Pseudonumerical range of matrices

Gholamreza Aghamollaei

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

Madjid Khakshour*

Department of Mathematics, Graduate University of Advanced Technology of Kerman, Kerman, Iran

Abstract

In this paper for a given $\epsilon > 0$ and an $n \times n$ complex matrix A, the notion of pseudonumerical range of A is introduced. Also, some algebraic and geometrical properties of this notion are investigated moreover the relationship between this notion and the pseudospectrum of A is stated.

Keywords: Spectrum, Pseudospectrum, Numerical range, Pseudonumerical range, Pseudonumerical radius.

Mathematics Subject Classification [2010]: 15A60, 47A10, 65F15

1 Introduction

Let $\mathbb{M}_n(\mathbb{C})$ be the algebra of all $n \times n$ complex equipped with the operator norm $\|.\|$ induced by the usual vector norm $\|x\| = (x^*x)^{1/2}$ on \mathbb{C}^n , i.e.,

$$||A|| = max\{||Ax|| : x \in \mathbb{C}^n, ||x|| = 1\}.$$

In our discussion we assume that $D(a, r) = \{\mu \in \mathbb{C} : |\mu - a| < r\}$, where $a \in \mathbb{C}$ and r > 0. Also, we use the convention that if z is an eigenvalue of $A \in M_n(\mathbb{C})$, then $||(A - zI)^{-1}|| := \infty$. For $\epsilon > 0$ and a matrix $A \in M_n(\mathbb{C})$, the pseudospectrum of A is defined and denoted, e.g., see [4], by

$$\sigma_{\epsilon}(A) = \{ z \in \mathbb{C} : \| (A - zI)^{-1} \| > 1/\epsilon \}.$$
(1)

It is known that

$$\sigma_{\epsilon}(A) = \{ z \in \sigma(A+E) : E \in \mathbb{M}_n \text{ and } \|E\| < \epsilon \}$$

= $\{ z \in \mathbb{C} : s_n(zI-A) < \epsilon \},$ (2)

where $s_n(.)$ denotes the smallest singular value.

Pseudospectrum provides an analytical and graphical alternative for investigating nonnormal matrices and operators, gives a quantitative estimate of departure from non-normality

^{*}Speaker