$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

Pseudonumerical range of matrices

Gholamreza Aghamollaei
Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
Madjid Khakshour*
Department of Mathematics, Graduate University of Advanced Technology of Kerman, Kerman, Iran

Abstract

In this paper for a given $\epsilon>0$ and an $n \times n$ complex matrix A, the notion of pseudonumerical range of A is introduced. Also, some algebraic and geometrical properties of this notion are investigated moreover the relationship between this notion and the pseudospectrum of A is stated.

Keywords: Spectrum, Pseudospectrum, Numerical range, Pseudonumerical range, Pseudonumerical radius.
Mathematics Subject Classification [2010]: 15A60, 47A10, 65F15

1 Introduction

Let $\mathbb{M}_{n}(\mathbb{C})$ be the algebra of all $n \times n$ complex equipped with the operator norm $\|$. induced by the usual vector norm $\|x\|=\left(x^{*} x\right)^{1 / 2}$ on \mathbb{C}^{n}, i.e.,

$$
\|A\|=\max \left\{\|A x\|: x \in \mathbb{C}^{n},\|x\|=1\right\}
$$

In our discussion we assume that $D(a, r)=\{\mu \in \mathbb{C}:|\mu-a|<r\}$, where $a \in \mathbb{C}$ and $r>0$. Also, we use the convention that if z is an eigenvalue of $A \in \mathbb{M}_{n}(\mathbb{C})$, then $\left\|(A-z I)^{-1}\right\|:=$ ∞. For $\epsilon>0$ and a matrix $A \in \mathbb{M}_{n}(\mathbb{C})$, the pseudospectrum of A is defined and denoted, e.g., see [4], by

$$
\begin{equation*}
\sigma_{\epsilon}(A)=\left\{z \in \mathbb{C}:\left\|(A-z I)^{-1}\right\|>1 / \epsilon\right\} . \tag{1}
\end{equation*}
$$

It is known that

$$
\begin{align*}
\sigma_{\epsilon}(A) & =\left\{z \in \sigma(A+E): E \in \mathbb{M}_{n} \text { and }\|E\|<\epsilon\right\} \tag{2}\\
& =\left\{z \in \mathbb{C}: s_{n}(z I-A)<\epsilon\right\},
\end{align*}
$$

where $s_{n}($.$) denotes the smallest singular value.$
Pseudospectrum provides an analytical and graphical alternative for investigating nonnormal matrices and operators, gives a quantitative estimate of departure from non-normality

[^0]
[^0]: *Speaker

