$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
pp.: 1-4

# Semi Factorization Structures 

Azadeh Ilaghi Hosseini*<br>Shahid Bahonar University of Kerman

Seyed Shahin Mousavi<br>Shahid Bahonar University of Kerman

Seyed Naser Hosseini
Shahid Bahonar University of Kerman


#### Abstract

In this article the notion of semi factorization structure in a category $\mathcal{X}$ is defined and its properties are investigated. Also conditions under which the semi factorization structure and the factorization structure are equivalent are given.


Keywords: Factorization structure, Semi factorization structure, Category Mathematics Subject Classification [2010]: 20J99, 18A32

## 1 Introduction

Factorization structures in categories are one of the most studied categorical concepts and weak factorization structures play an important role in homotopy theory(see [2]).

We introduce the notion of semi factorization structure in a category $\mathcal{X}$ and we remark that factorization structures are semi factorization structures. Then we provide an example of a semi factorization structure which is not a factorization structure. Also we analyze some of the properties of semi factorization structures which are similar to those of factorization structures. Finally, we show that if $\mathcal{E}, \mathcal{M}$ are classes of morphisms of $\mathcal{X}$ which are closed under composition and $\mathcal{M} \subseteq \operatorname{Mono}(\mathcal{X})$, where $\operatorname{Mono}(\mathcal{X})$ is the class of monomorphisms of $\mathcal{X}$, then $\mathcal{X}$ has $(\mathcal{E}, \mathcal{M})$-semi factorization structure if and only if it has $(\mathcal{E}, \mathcal{M})$-factorization structure.
Definition 1.1. Let $\mathcal{E}$ and $\mathcal{M}$ be two classes of morphisms in a category $\mathcal{X}$, which are closed under composition with isomorphisms. We say that $\mathcal{X}$ has $\operatorname{semi}(\mathcal{E}, \mathcal{M})$ factorizations or $(\mathcal{E}, \mathcal{M})$ is a semi factorization structure in $\mathcal{X}$, whenever:
(i) for all $f: Y \longrightarrow X$ there exist $m \in \mathcal{M} / X$ and $e \in Y / \mathcal{E}$ such that $f=m e$; and
(ii) in the unbroken commutative diagrams below, with $e, e^{\prime} \in \mathcal{E}$ and $m, m^{\prime} \in \mathcal{M}$ :


[^0]
[^0]:    *Speaker

