

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Semi Factorization Structures

Semi Factorization Structures

Azadeh Ilaghi Hosseini^{*} Shahid Bahonar University of Kerman Seyed Shahin Mousavi Shahid Bahonar University of Kerman

Seyed Naser Hosseini Shahid Bahonar University of Kerman

Abstract

In this article the notion of semi factorization structure in a category \mathcal{X} is defined and its properties are investigated. Also conditions under which the semi factorization structure and the factorization structure are equivalent are given.

Keywords: Factorization structure, Semi factorization structure, Category Mathematics Subject Classification [2010]: 20J99, 18A32

1 Introduction

Factorization structures in categories are one of the most studied categorical concepts and weak factorization structures play an important role in homotopy theory (see [2]).

We introduce the notion of semi factorization structure in a category \mathcal{X} and we remark that factorization structures are semi factorization structures. Then we provide an example of a semi factorization structure which is not a factorization structure. Also we analyze some of the properties of semi factorization structures which are similar to those of factorization structures. Finally, we show that if \mathcal{E}, \mathcal{M} are classes of morphisms of \mathcal{X} which are closed under composition and $\mathcal{M} \subseteq Mono(\mathcal{X})$, where $Mono(\mathcal{X})$ is the class of monomorphisms of \mathcal{X} , then \mathcal{X} has $(\mathcal{E}, \mathcal{M})$ -semi factorization structure if and only if it has $(\mathcal{E}, \mathcal{M})$ -factorization structure.

Definition 1.1. Let \mathcal{E} and \mathcal{M} be two classes of morphisms in a category \mathcal{X} , which are closed under composition with isomorphisms. We say that \mathcal{X} has semi $(\mathcal{E}, \mathcal{M})$ -factorizations or $(\mathcal{E}, \mathcal{M})$ is a semi factorization structure in \mathcal{X} , whenever:

(i) for all $f: Y \longrightarrow X$ there exist $m \in \mathcal{M}/X$ and $e \in Y/\mathcal{E}$ such that f = me; and (ii) in the unbroken commutative diagrams below, with $e, e' \in \mathcal{E}$ and $m, m' \in \mathcal{M}$:

*Speaker