

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Fixed point theorems for G-nonexpansive mappings in ultrametric spaces ... pp.: 1-4

Fixed Point Theorems for G-Nonexpansive Mappings in Ultrametric Spaces and non-Archimedean Normed Spaces Endowed with a Graph

Hamid Mamghaderi^{*} K. N. Toosi University of Technology Hashem Parvaneh Masiha K. N. Toosi University of Technology

Abstract

The purpose of this article is to present some new fixed point results for *G*-nonexpansive mappings defined on an ultrametric space and non-Archimedean normed space which are endowed with a graph. In particular, we investigate the relationship between weak connectivity and the existence of fixed points for these mappings.

Keywords: Fixed point; ultrametric space; spherically complete ultrametric spaces; non-Archimedean space: nonexpansive mapping. Mathematics Subject Classification [2010]: 47H10, 32P05

1 Introduction

Let (X, d) be a metric space. (X, d) is called an ultrametric space if the metric d satisfies the strong triangle inequality, i.e., for all $x, y, z \in X$:

$$d(x,y) \le \max\{d(x,z), d(y,z)\},\$$

in this case d is said to be ultrametric [4].

We denote by B(x,r), the closed ball $B(x,r) = \{y \in X : d(x,y) \leq r\}$, where $x \in X$ and $r \geq 0$ $(B(x,0) = \{x\})$. A known characteristic property of ultrametric spaces is the following:

If $x, y \in X$, $0 \le r \le s$ and $B(x, r) \cap B(y, s) \ne \emptyset$, then $B(x, r) \subset B(y, s)$.

An ultrametric space (X, d) is said to be spherically complete if every shrinking collection of balls in X has a nonempty intersection [4]. [4] Let \mathbb{K} be a non-Archimedean valued field. A norm on a vector space X over \mathbb{K} is a map $\|\cdot\|$ from X into $[0, \infty)$ with the following properties:

- 1) $||x|| \neq 0$ if $x \in E \setminus \{0\}$;
- 2) $||x+y|| \le \max\{||x||, ||y||\}$ $(x, y \in X);$
- 3) $\|\alpha x\| = |\alpha| \|x\|$ $(\alpha \in \mathbb{K}, x \in X).$

In 1993, Petalas and Vidalis [3] proved the following theorem:

Theorem 1.1 ([3]). Let X be a non-Archimedean spherically complete normed space. If $T: X \longrightarrow X$ is a nonexpansive mapping, i.e., $d(Tx, Ty) \leq d(x, y) \quad x, y \in X$, Then either T has at least one fixed point or there exists a T-invariant closed ball B with radius r > 0 such that ||b - Tb|| = r for all $b \in B$.

^{*}Speaker