

46th Annual Iranian Mathematics Conference 25-28 August 2015

Yazd University

Lie ternary (σ, τ, ξ) -derivations on Banach ternary algebras

Lie Ternary (σ, τ, ξ) -Derivations on Banach Ternary Algebras

Razieh Farokhzad^{*} Gonbad-Kavous University

Abstract

Let A be a Banach ternary algebra over a scalar field \mathbb{R} or \mathbb{C} and X be a Banach ternary A-module. Let σ, τ and ξ be linear mappings on A. We define a Lie ternary (σ, τ, ξ) -derivation. Moreover, we prove the generalized Hyers-Ulam-Rassias stability of lie ternary (σ, τ, ξ) -derivations on Banach ternary algebras.

Keywords: Banach ternary A-module, Lie ternary (σ, τ, ξ) -derivation, Hyers–Ulam–Rassias stability.

1 Introduction

Let A be a Banach ternary algebra and X be a Banach space. Then X is called a ternary Banach A-module, if module operations $A \times A \times X \to X$, $A \times X \times A \to X$, and $X \times A \times A \to X$ are C-linear in every variable. Moreover satisfy:

 $\max\{\|[xab]_X\|, \|[axb]_X\|, \|[abx]_X\|\} \le \|a\| \|b\| \|x\|$

for all $x \in X$ and all $a, b \in A$.

The stability of functional equations was started in 1940 with a problem raised by S. M. Ulam [6]. In 1941 Hyers affirmatively solved the problem of S. M. Ulam in the context of Banach spaces. In 1950 T.Aoki [2] extended the Hyers' theorem. in 1978, Th. M. Rassias [5] formulated and proved the following Theorem:

Assume that E_1 and E_2 are real normed spaces with E_2 complete, $f : E_1 \to E_2$ is a mapping such that for each fixed $x \in E_1$ the mapping $t \to f(tx)$ is continuous on \mathbb{R} , and let there exist $\epsilon \geq 0$ and $p \in [0, 1)$ such that $||f(x + y) - f(x) - f(y)|| \leq \epsilon(||x||^p + ||y||^p)$ for all $x, y \in E_1$. Then there exists a unique linear mapping $T : E_1 \in E_2$ such that $||f(x) - T(x)|| \leq \epsilon \frac{||x||^p}{(1-2^p)}$ for all $x \in E_1$.

The equality $||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$ has provided extensive influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations [3]. In 1994, a generalization of Rassias' theorem was obtained by Gavruta [4], in which he replaced the bound $\epsilon(||x||^p + ||y||^p)$ by a general control function.

 $^{^*}Speaker$