$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
Talk
Some new singular value inequalities for compact operators

Some new singular value inequalities for compact operators

Ali Taghavi
University of Mazandaran

Vahid Darvish*
University of Mazandaran

Abstract

In this paper, by applying the concept of operator h-convex functions we prove several singular value inequalities for operators which provide refinements of previous results.

Keywords: Hermite-Hadamard inequality, Operator h-convex function, Singular value inequality
Mathematics Subject Classification [2010]: 47A63, 47B05, 26D15

1 Introduction

Let $B(H)$ stand for the C^{*}-algebra of all bounded linear operators on a complex separable Hilbert space H with inner product $\langle\cdot, \cdot\rangle$. An operator $A \in B(H)$ is positive and write $A \geq 0$ if $\langle A x, x\rangle \geq 0$ for all $x \in H$. Let $B(H)^{+}$stand for all positive operators in $B(H)$.

If A is a self-adjoint operator and f is a real valued continuous function on $\operatorname{Sp}(A)$, then $f(t) \geq 0$ for any $t \in \operatorname{Sp}(A)$ implies that $f(A) \geq 0$.

The following inequality holds for any convex function f defined on \mathbb{R}

$$
\begin{equation*}
(b-a) f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(x) d x \leq(b-a) \frac{f(a)+f(b)}{2}, \quad a, b \in \mathbb{R} \tag{1}
\end{equation*}
$$

A real valued continuous function f on an interval I is said to be operator convex if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(1-\lambda) f(A)+\lambda f(B), \tag{2}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every self-adjoint operator A and B on a Hilbert space H whose spectra are contained in I (see [3]).

As an example of such functions, we note that $f(t)=t^{r}$ is operator convex on $(0, \infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0, \infty)$ if $0 \leq r \leq 1$ (see [1, p.147]).

In [3], Dragomir investigated the operator version of the Hermite-Hadamard inequality for operator convex functions asserts that if $f: I \rightarrow \mathbb{R}$ is an operator convex function on the interval I then, for any self-adjoint operators A and B with spectra in I the following inequalities hold

$$
\begin{equation*}
f\left(\frac{A+B}{2}\right) \leq \int_{0}^{1} f((1-t) A+t B) d t \leq \frac{f(A)+f(B)}{2} . \tag{3}
\end{equation*}
$$

[^0]
[^0]: *Speaker

