

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Amenability of vector valued group algebras

Amenability of Vector Valued Group algebras

Samaneh Javadi^{*} University of Guilan Faculty of Engineering- East Guilan Ali Ghaffari Semnan University

Abstract

Generalizing the notion of amenability for $L^1(G)$, we study the concept of amenability of $L^1(G, A)$. Among the other things, we prove that $L^1(G, A)$ is approximately weakly amenable where A is a unital separable Banach algebra. We investigate the existence of a left invariant mean on various vector valued function spaces. The candidates for the choice of space are $LUC(G, A^*)$, $WAP(G, A^*)$ and $C_0(G, A^*)$.

 ${\bf Keywords:}$ Amenability, Banach algebras, Derivation, Group algebra, Invariant mean.

Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

It is a well-known theorem of Johnson that a locally compact group G is amenable if and only if $L^1(G)$ is amenable. We now switch from groups to vector-valued Banach algebras. Our references for vector-valued integration theory is [1], [2]. Let G be a locally compact group with a fixed left Haar measure m and A be a unital separable Banach algebra. Let $L^1(G, A)$ be the set of all measurable vector-valued (equivalence classes of) functions $f: G \to A$ such that $||f||_1 = \int_G ||f(t)|| dm(t) < \infty$. Equipped with the norm $||.||_1$ and the convolution product * specified by

$$f * g(x) = \int f(t)g(t^{-1}x)dm(t) \ (f,g \in L^1(G,A)),$$

 $L^1(G, A)$ is a Banach algebra. It is our objective in this paper to demonstrate the corresponding characterization of $L^1(G, A)$. M(G, A) will denote the space of regular A-valued Borel measures of bounded variation on G. $L^1(G, A)$ is a closed two-sided ideal of M(G, A).

Another space considered in this paper is $L^{\infty}(G, A^*)$, which consists of maps f of G into A^* that are scalarwise measurable and $N_{\infty}(||f||) = \log \operatorname{ess\,sup}_{t \in G}(||f(t)||) < \infty$. The dual of $L^1(G, A)$ may be identified with $L^{\infty}(G, A^*)$ [2]. We show that every continuous derivation from $L^1(G, A)$ into $L^{\infty}(G, A^*)$ is approximately inner, that is, of the form

$$D(a) = \lim_{\alpha} (F_{\alpha}.a - a.F_{\alpha})$$

for some $\{F_{\alpha}\}_{\alpha \in I} \in L^{\infty}(G, A^*)$.

^{*}Speaker