

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Decomposing modules into modules with local endomorphism rings

Decomposing modules into modules with local endomorphism rings

Tayyebeh Amouzegar Department of Mathematics, Quchan University of Advanced Technology, Quchan, Iran

Abstract

Let R be a right artinian ring or a perfect commutative ring. Let M be a noncosingular lifting module that does not have relatively projection component. Then $M = \bigoplus_{i=1}^{n} M_i$ has the exchange property and the decomposition complements direct summands, where each endomorphism ring $End(M_i)$ is local.

Keywords: noncosingular module; lifting module; local endomorphism ring. **Mathematics Subject Classification [2010]:** 16D10, 16D80.

1 Introduction

Throughout this paper R will denote an associative ring with identity. Modules over R will be right R-modules. We will use the notation $N \ll M$ to indicate that N is small in M (i.e. $\forall L \leq M, L+N \neq M$). Rad(M) will denote the Jacobson radical of M. A non-zero module M is called *hollow* if every proper submodule of M is small in M. M is called *local* if the sum of all proper submodules of M is also a proper submodule of M. It is clear that every local module is hollow. A module M is called *lifting* if for every submodule $A \leq M$, there exists a direct summand B of M such that $B \leq A$ and $A/B \ll M/B$. Lifting modules are dual notions of extending modules and [3] deals with different aspects of lifting modules. A module M is amply supplemented and every coclosed submodule of M is a direct summand of M if and only if M is lifting by [3, 22.3(d)]. In [5] Talebi and Vanaja defined $\overline{Z}(M)$ as follows:

$$\overline{Z}(M) = \operatorname{Re}(M, \mathcal{S}) = \bigcap \{ \operatorname{Ker}(g) \, | \, g \in \operatorname{Hom}(M, L), L \in \mathcal{S} \},\$$

where S denotes the class of all small modules. They called M a cosingular (noncosingular) module if $\overline{Z}(M) = 0$ ($\overline{Z}(M) = M$).

A family $\{X_{\lambda} : \lambda \in \Lambda\}$ of submodules of a module M is called a *local summand* of M, if $\sum_{\lambda \in \Lambda} X_{\lambda}$ is direct and $\sum_{\lambda \in F} X_{\lambda}$ is a summand of M for every finite subset $F \subseteq \Lambda$. If even $\sum_{\lambda \in \Lambda} X_{\lambda}$ is a summand of M, we say that the *local summand* is a summand. A module M is said to have the *(finite) exchange property* if for any (finite) index set I, whenever $M \oplus N = \bigoplus_{i \in I} A_i$ for modules N and A_i , then $M \oplus N = M \oplus (\bigoplus_{i \in I} B_i)$ for submodules $B_i \leq A_i$. Let $M = \bigoplus_I M_i$ be a decomposition of the module M into nonzero summands M_i . This decomposition is said to *complement direct summands* if, whenever A is a direct summand of M, there is a subset J of I for which $M = (\bigoplus_J M_i) \oplus A$.