

 $46^{\rm th}$ Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

A note on composition operators on Besov type spaces

A note on composition operators on Besov type spaces

Ebrahim Zamani^{*} University of Tabriz Hamid Vaezi University of Tabriz

Abstract

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} . We denote by $H(\mathbb{D})$ the space of all holomorphic function on \mathbb{D} . given a holomorphic self map φ on \mathbb{D} the composition operator C_{φ} on $H(\mathbb{D})$ is defined by

$$(C_{\varphi}f)(z) = f(\varphi(z))$$

for every $f \in H(\mathbb{D})$ and $z \in \mathbb{D}$.

In this article we give some results about the boundedness of the composition operators on Besov type space $B_{p,q}$ for $1 and <math>-1 < q < \infty$.

Keywords: Composition operator, Carleson Measure, Besov Type Space Mathematics Subject Classification [2010]: 47B33, 30H25

1 Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} . We will use the notation $H(\mathbb{D})$ to denote the space of holomorphic functions on the unit disc \mathbb{D} . Suppose φ is a holomorphic function defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Each $\psi \in H(\mathbb{D})$ and holomorphic self-map φ of \mathbb{D} induces a linear weighted composition operator $C_{\psi,\varphi} : H(\mathbb{D}) \to H(\mathbb{D})$ defined by

$$C_{\psi,\varphi}(f)(z) = \psi(z)f(\varphi(z))$$

for every $f \in H(\mathbb{D})$ and $z \in \mathbb{D}$.

(weighted) Composition operator on various spaces of functions are being studied by many authors. We can refer for example to [4, 5, 6, 7].

Fix any $a \in \mathbb{D}$ and let $\sigma_a(z)$ be the Mobius transform defined by

$$\sigma_a(z) = \frac{a-z}{1-\overline{a}z}, z \in \mathbb{D}.$$

We denote the set of all Mobius transformations on \mathbb{D} by G. Such a map is its own inverse and satisfies the fundamental identity

$$|\sigma'_a(z)| = \frac{1 - |a|^2}{|1 - \overline{a}z|^2}.$$

see[6, 9].

*Speaker