

 $46^{\rm th}$ Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

On entropy for fuzzy sets and discrete dynamical system

On entropy for fuzzy sets and discrete dynamical system

Tayebe Waezizadeh^{*} Shahid Bahonar University of Kerman Farzad Fatehi Shahid Bahonar University of Kerman

Abstract

In this paper a random variable on a probability space which is a fuzzy set is introduced and the entropy of the fuzzy set with respect to a finite partition is defined. As follow a discrete dynamical system on a fuzzy set is presented and its entropy has been defined.

Keywords: Dynamical system, Random variable, fuzzy set, Entropy Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

One of the most important characterizations can attach to a random variable and to a stochastic process is its entropy. The notion of entropy for discrete random variables as well as absuloutly continuous random variables is well defined. The discrete random variable is a random variable with at most countable image. Absoultly continuous random variable is a random variable with uncountable image that has a non-negative density function [1, 4]. A stochastic process is a mathematical model for the occurrence of random phenomena as time goes on. This is the case, for example, when a random experiment is repeated over and over again [1].

In this paper, we consider a probability space, Ω , which is fuzzy set with function $m : \Omega \longrightarrow [0,1][2]$.

In the next section, we define the entropy of the random variable X^{α} , which α is a finite partition on Ω .

We introduce random variables on the fuzzy set with respect to a discrete dynamical system on Ω and define the entropy of the dynamical system in the last section.

2 Entropy of a fuzzy set

Let Ω be a probability measure space with σ - algebra β and probability measure μ . Also consider (Ω, m) be a fuzzy set $(m : \Omega \longrightarrow [0, 1])$ and $\alpha = \{A_1, A_2, ..., A_{|\alpha|}\}$ be a finite partition on Ω .

Define $\chi_0^{\alpha} : \Omega \longrightarrow \{1, 2, ..., |\alpha|\}$, $\chi_0^{\alpha}(\omega) = i$ where $\omega \in A_i$.

Consider the random variable $X^{\alpha} : \Omega \longrightarrow \{1, 2, ..., |\alpha|\} \times [0, 1]$ which $X^{\alpha}(\omega) = (\chi_0^{\alpha}(\omega), m(\omega))$, so two different cases will be happened:

 $^{^*}Speaker$