

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Isospectral matrix flows and numerical integrators on Lie groups

Isospectral Matrix Flows and Numerical Integrators on Lie Groups^{*}

Mahsa R. Moghaddam[†] Sahand University of Technology Kazem Ghanbari Sahand University of Technology

Abstract

This paper illustrates how classical integration methods for differential equations on manifolds can be modified in order to preserve certain geometric properties of the exact flow. Runge-Kutta-Munthe-Kass method is considered and some examples are shown to verify the efficiency of the method.

Keywords: Isospectral matrix flow, Lie group, Geometric integration, Differential equation on manifold.Mathematics Subject Classification [2010]: 58J53, 15A18, 15B35, 15A24

1 Introduction

Isospectral matrix flows on the space of real $n \times n$ matrices M_n are characterized by the matrix differential equation

$$\frac{dA}{dt} = [A, F(A)], \quad A(0) = A_0, \tag{1}$$

where $A \in M_n$, $F : [0, \infty) \times M_n \to M_n$ is a matrix operator, [X, Y] = XY - YX is the matrix commutator (also known as the Lie bracket) and A_0 is a given $n \times n$ matrix. The function A and F that obey the differential equation (1) are usually called a Lax pair. Many interesting problems can be written in this form. We just mention the Toda system, the continuous realization of QR-type algorithms, projected gradient flows, and inverse eigenvalue problems, see Chu [2] and Calvo, Iserles and Zanna [1].

Lemma 1.1. Consider a matrix differential equation (1). Then, all eigenvalues of A(t), the solution of (1), are independent of t, so that the flow (1) is isospectral flow.

Proof. To prove the isospectrality of the flow, we define U(t) by

$$\frac{dU}{dt} = -F(A(t))U(t), \quad U(0) = I_n, \tag{2}$$

[†]Speaker

^{*}Will be presented in English