

 $46^{\rm th}$ Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Some properties of multi-Fedosove supermanifolds of order 3

Some properties of multi-Fedosove supermanifolds of order 3

Masoud Aminizadeh^{*} University of Vali-e-Asr

Abstract

In this paper we define multi-Fedosove supermanifolds and show that every multisymplectic supermanifold of order 3 is a multi-Fedosove supermanifolds. Then we study the curvature tensor of a multi-Fedosove supermanifolds.

 ${\bf Keywords:}\,$ Multisymplectic supermanifold, multi-Fedosove supermanifolds, curvature tensor

Mathematics Subject Classification [2010]: 58A50, 53D05

1 multi-Fedosove supermanifolds

A supermanifold \mathcal{M} of dimension n|m is a pair $(\mathcal{M}, \mathcal{O}_{\mathcal{M}})$, where \mathcal{M} is a Hausdorff topological space and $\mathcal{O}_{\mathcal{M}}$ is a sheaf of commutative superalgebras with unity over \mathbb{R} locally isomorphic to $\mathbb{R}^{m|n} = (\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n} \otimes \Lambda_{\eta^1, \dots, \eta^m})$, where $\mathcal{O}_{\mathbb{R}^n}$ is the sheaf of smooth functions on \mathbb{R}^n and $\Lambda_{\eta^1, \dots, \eta^m}$ is the grassmann superalgebra of m generators.

Definition 1.1. Let ξ be a locally free sheaf of $\mathcal{O}_{\mathcal{M}}$ -supermodules on \mathcal{M} , a connection on ξ is a morphism $\nabla : \mathcal{T}_{\mathcal{M}} \otimes_{\mathbb{R}} \xi \to \xi$ of sheaves of supermodules over \mathbb{R} such that $\nabla_{fX} v = f \nabla_X v, \nabla_X f v = (Xf) + (-1)^{\widetilde{X}\widetilde{f}} f \nabla_X v$ and $\widetilde{\nabla_X v} = \widetilde{v} + \widetilde{X}$, for all homogeneous function f, vector fields X and section v of ξ .

Let us consider a multisymplectic supermanifold of degree k (\mathcal{M}, ω), i.e. a supermanifold \mathcal{M} with a closed non-degenerate graded differential k-form ω .

Definition 1.2. A multisymplectic connection on \mathcal{M} is a connection for which: i- The torsion tensor vanishes, i.e.

$$\nabla_X Y - (-1)^{\widetilde{X}\widetilde{Y}} \nabla_Y X = [X, Y].$$

ii- It is compatible to the multisymplectic form, i.e. $\nabla \omega = 0$.

A multi-Fedosov supermanifold $(\mathcal{M}, \omega, \nabla)$ is defined as a multisymplectic supermanifold (\mathcal{M}, ω) equipped with a multisymplectic connection ∇ .

^{*}Speaker