

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Real interpolation of quasi-Banach spaces

Real interpolation of quasi-Banach spaces

Zahra Ghorbani^{*} Jahrom University

Abstract

We inter relate the real interpolation space with the quasi-Banach couple (A_0, A_1) , $(A_0 + A_1, A_1)$ and $(A_0, A_0 \cap A_1)$ that A_j is c_j normed. Proving among others the identities

$$(A_0 + A_1, A_1)_{\theta,q} \cap A_0 = (A_0, A_1)_{\theta,q} \cap A_0 = (A_0, A_0 \cap A_1)_{\theta,q}$$

 $(A_0 \cap A_1, A_1)_{\theta,q} + A_0 = (A_0, A_1)_{\theta,q} + A_0 = (A_0, A_0 + A_1)_{\theta,q}.$

for all $0 < q \le \infty$, $0 < \theta < 1$, and $c_1/c_0 \le 1$.

Keywords: quasi-Banach spaces, interpolation space, real method of interpolation **Mathematics Subject Classification [2010]:** 46M35, 47A60

1 Introduction

Our main reference to the theory of interpolation space is [1]. Let $\overline{A} = (A_0, A_1)$ be a quasi-Banach couple, let $0 < \theta < 1$ and $0 < q \leq \infty$. The real interpolation space $(A_0, A_1)_{\theta,q}$ consist of all elements $a \in A_0 + A_1$ having a finite quasi-norm

$$\|a\|_{\theta,q,} = \begin{cases} (\sum_{\nu \in Z} (2^{-\nu\theta} K(2^{\nu}, a))^q)^{1/q} & \text{if } 0 < q < \infty \\ sup_{\nu \in Z} \{2^{-\nu\theta} K(2^{\nu}, a)\} & \text{if } q = \infty \end{cases}$$

Here, for $0 < t < \infty$, we put

$$K(t,a) = K(t,a;A_0,A_1) = \inf\{\|a_0\|_{A_0} + t\|a_1\|_{A_1} : a = a_0 + a_1, a_j \in A_j\}$$

and similarly the J-functional for $a \in A_0 \cap A_1 := \triangle(\bar{A})$ by

$$J(t,a;\bar{A}) = max\{\|a\|_{A_0}, t\|a\|_{A_1} : a \in \triangle(\bar{A})\}.$$

For $0 < \theta < 1$ we abbreviate $\overline{\theta} = max(\theta, 1 - \theta)$ and $\underline{\theta} = min(\theta, 1 - \theta)$.

*Speaker