

 $46^{\rm th}$ Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Minimum size of intersection for covering groups by subgroups

Minimum size of intersection for covering groups by subgroups

Mohammad Javad Ataei*

Department of Mathematics, Payame Noor University, Iran

Abstract

Let G denotes a semisimple \mathfrak{C}_8 -group and $\{M_i \mid 1 \leq i \leq 8\}$ be a maximal irredundant 8-cover for G, with core-free intersection $D = \bigcap_{i=1}^8 M_i$. Also for each $i, 1 \leq i \leq 8$ we assume that $|G: M_i| = \alpha_i$ such that $\alpha_1 \leq \alpha_2 \leq \alpha_3 \leq \alpha_4 \leq \alpha_5 \leq \alpha_6 \leq \alpha_7 \leq \alpha_8$.

Let l is minimum positive integer such that $\bigcap_{i=1}^{l} (M_i)_G \neq 1$. We say that l is minimum size of intersection and in this case we show that MSI(G)=l. In this paper we show that if G be a semisimple \mathfrak{C}_8 -group and $\alpha_l \leq 4$ then $MSI(G) \leq 3$

Keywords: covering groups by subgroups, Subdirect product, maximal iredundant cover, core-free intersection Mathematics Subject Classification [2010]: 20F99

1 Introduction and history

Let G be a group. A set C of proper subgroups of G is called a cover for G if its settheoretic union is equal to G. If the size of C is n, we call C an n-cover for the group G. A cover C for a group G is called irredundant if no proper subset of C is a cover for G. A cover C for a group G is called core-free if the intersection $D = \bigcap_{M \in C} M$ of C is core-free in G, i.e. $D_G = \bigcap_{g \in G} g^{-1} Dg$ is the trivial subgroup of G. A cover C for a group G is called maximal if all the members of C are maximal subgroups of G. A cover C for a group G is called a \mathfrak{C}_n -cover whenever C is an irredundant maximal core-free n-cover for G and in this case we say that G is a \mathfrak{C}_n -group. A finite group is called semisimple if it has no non-trivial normal abelian subgroups (see p. 86 of [9] for further information on such groups).

Also we use the usual notations ([9]); for example, C_n denotes the cyclic group of order n, $(C_n)^j$ is the direct product of j copies of C_n , the core of a subgroup H of G is denoted by H_G .

In [10], Scorza determined the structure of all groups having an irredundant 3-cover with core-free intersection.

Theorem 1.1. (Scorza [10]) Let $\{A_i : 1 \le i \le 3\}$ be an irredundant cover with core-free intersection D for a group G. Then D = 1 and $G \cong C_2 \times C_2$.

In [7], Greco characterized all groups having an irredundant 4-cover with core-free intersection. Bryce et al.[6], characterized groups with maximal irredundant 5-cover with core-free intersection.

^{*}Department of Mathematics, Payame Noor University of Isfahan, Iran