

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Infinitely many solutions for a boundary value problem

INFINITELY MANY SOLUTIONS FOR A BOUNDARY VALUE PROBLEM

Fariba Fattahi^{*} University of Mazandaran Mohsen Alimohammady Mazandaran University

Abstract

The purpose of this paper is the study of hemivariational inequalities with Neumann boundary condition. Our approach is based on nonsmooth critical point Theorem.

Keywords: hemivariational inequality, Nonsmooth critical point theory, p-Laplacian Mathematics Subject Classification [2010]: 35J87, 49J40, 49J52

1 Introduction

The applications to nonsmooth variational problems have been seen in (cf. [2]), Bonanno and Candito studied a class of variational-hemivariational inequalities; In (cf. [1]), Alimo-hammady studied variational-hemivariational inequality on bounded domains.

The aim of this paper is to study the following boundary value problem, depending on the parameters λ, μ with non-smooth Neumann boundary condition:

$$\begin{cases} -\Delta_p u + a|u|^{p-2}u = 0 & \text{in }\Omega\\ -|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} \in -\lambda \partial F(x, u) - \mu \partial G(x, u) & \text{on }\partial\Omega \end{cases}$$
(1)

We assume that it is given a functional $\chi : X \to \mathbb{R} \cup \{+\infty\}$ which is convex, lower semicontinuous, proper whose effective domain $dom(\chi) = \{x \in X : \chi(x) < +\infty\}$ is a (nonempty, closed, convex) cone in X.

Our aim is to study the following hemivariational inequalities problem:

Find $u \in dom(\chi)$ which is called a weak solution of problem (1), i.e; if for all $v \in dom(\chi)$,

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla (v-u) dx + \int_{\Omega} a|u|^{p-2} u(v-u) dx$$
$$-\lambda \int_{\partial \Omega} F^{0}(x, u, v-u) d\sigma - \mu \int_{\partial \Omega} G^{0}(x, u, v-u) d\sigma \ge 0.$$
(2)

*Speaker