$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

Coupled Fixed Points via Measurer of Noncompactness

Navid Sabzali*
Azad University of Behbahan

Jahangir Alizadeh
Amirkabir University

Abstract

In this paper, using the technique of measure of nono compactness and Darbo fixed point theorem we prove some theorems on coupled fixed point theorems for a class of functions

Keywords: Keywords: Measure of noncompactness,Banach space, Coupled fixed point
Mathematics Subject Classification [2010]: Subject[2000]: 47H09, 34A12

1 Introduction

Bhaskar and Lakshmikantham [5] introduced the concept of a coupled fixed point for a operator and obtained some coupled fixed point existence theorems for a class of operators. In this paper, using the technique of measure of noncompactness, we prove some the existence theorems of coupled fixed point for a class of operators. Measure of noncompactness have been successfully applied in theories of differential and integral equations(see [7]) . This concept was first introduced by Kuratowski. In some Banach spaces, there are known formulas of measure of noncompactness (see [2]).

Throughout this paper we assume that E is a Banach space. For a subset X of E, the closure and closed convex hull of X in E are denoted by $\bar{X}, \operatorname{co}(X)$, respectively. Also let \bar{B}_{r} is the closed ball in E centered at zero and with radius r and we write $B\left(x_{0}, r\right)$ to denote the closed ball centered at x_{0} with radius r. Moreover, we symbolize by \mathfrak{M}_{E} the family of nonempty bounded subsets of E and by \mathfrak{N}_{E} subfamily consisting of all relatively compact subsets of E. In addition to, The norm $\|\cdot\|$ in $E \times E$ is defined by $\|(x, y)\|=\|x\|+\|y\|$ for any $x, y \in E \times E$.

The following definitions will be needed in the sequel.
Definition 1.1. ([3]) A mapping $\mu: \mathfrak{M}_{E} \longrightarrow[0, \infty)$ is said to be a measure of noncompactness in E if it satisfies the following conditions;
$\left(\mathbf{B}_{1}\right)$ The family $\operatorname{Ker} \mu=\left\{X \in \mathfrak{M}_{E}: \mu(X)=0\right\}$ is nonempty and $\operatorname{Ker} \mu \subseteq \mathfrak{N}_{E}$.
$\left(\mathbf{B}_{2}\right)$ If $X \subseteq Y \Rightarrow \mu(X) \leq \mu(Y)$.
$\left(B_{3}\right) \mu(\bar{X})=\mu(X)$.
$\left(B_{4}\right) \mu(\operatorname{CoX})=\mu(X)$.
($\left.B_{5}\right) \mu(\lambda X+(1-\lambda) Y) \leq \lambda \mu(X)+(1-\lambda) \mu(Y)$ for $\lambda \in[0,1)$. $\left(\mathbf{B}_{6}\right)$ If $\left(X_{n}\right)$ is a sequence of closed sets from \mathfrak{M}_{E} such that $X_{n+1} \subseteq X_{n},(n \geq 1)$ and if $\lim _{n \rightarrow \infty} \mu\left(X_{n}\right)=0$, then the intersection set $X_{\infty}=\bigcap_{n=1}^{\infty} X_{n}$ is nonempty.

[^0]
[^0]: *Speaker

