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Abstract

In this paper, using the technique of measure of nono compactness and Darbo fixed
point theorem we prove some theorems on coupled fixed point theorems for a class of
functions
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1 Introduction

Bhaskar and Lakshmikantham [5] introduced the concept of a coupled fixed point for a
operator and obtained some coupled fixed point existence theorems for a class of opera-
tors. In this paper, using the technique of measure of noncompactness, we prove some the
existence theorems of coupled fixed point for a class of operators. Measure of noncom-
pactness have been successfully applied in theories of differential and integral equations(
see [7]) . This concept was first introduced by Kuratowski. In some Banach spaces, there
are known formulas of measure of noncompactness (see [2]).

Throughout this paper we assume that E is a Banach space. For a subset X of E, the
closure and closed convex hull of X in E are denoted by X, co(X), respectively. Also let

Bris the closed ball in E centered at zero and with radius r and we write B(x0, r) to denote
the closed ball centered at x0 with radius r. Moreover, we symbolize by ME the family of
nonempty bounded subsets of E and by NE subfamily consisting of all relatively compact
subsets of E. In addition to, The norm ‖.‖ in E×E is defined by ‖(x, y)‖ = ‖x‖+ ‖y‖ for
any x, y ∈ E × E.

The following definitions will be needed in the sequel.
Definition 1.1. ([3]) A mapping µ : ME −→ [0,∞) is said to be a measure of

noncompactness in E if it satisfies the following conditions;
(B1) The family Kerµ = {X ∈ME : µ(X) = 0} is nonempty and Kerµ ⊆ NE .
(B2) If X ⊆ Y ⇒ µ(X) ≤ µ(Y ).
(B3) µ(X) = µ(X).
(B4) µ(CoX) = µ(X).
(B5) µ(λX + (1−λ)Y ) ≤ λµ(X) + (1−λ)µ(Y ) for λ ∈ [0, 1). (B6) If (Xn) is a sequence

of closed sets from ME such that Xn+1 ⊆ Xn, (n ≥ 1) and if limn→∞ µ(Xn) = 0, then the inter-
section set X∞ =

⋂∞
n=1Xn is nonempty.
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