

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

A covering property of pullback fibrations

A covering property of pullback fibrations

Ali Pakdaman Golestan University Abolfazl Aghili^{*} Golestan University Javad Koohsari Golestan Uuniversity

Abstract

In this talk, we show that the total space of the pullback fibration of a given fibration $f: E \longrightarrow X$ by a covering map $c: \widetilde{X} \longrightarrow X$ is a covering space of E. Also, we study conditions in which give us universal property of these covering maps.

Keywords: Covering map, Fibration, Pullback fibration Mathematics Subject Classification [2010]: 57M10, 55R05

1 Introduction

We recall that a *fibration* $f : E \longrightarrow X$ is a continuous map in which has homotopy lifting property with respect to an arbitrary space. If $f : E \longrightarrow X$ is a fibration and $g : Y \longrightarrow X$ is a continuous map, then

$$g^*E := \{(y, e) \in Y \times E | g(y) = f(e)\},\$$

equipped by the subspace topology and projection map $p_1 := pr_1 : g^*E \longrightarrow Y$ defines a fibration over Y, named *pulback* of f by g and denoted by g^*f . Also, recall that a *covering map* is a continuous map $c : \widetilde{X} \longrightarrow X$ such that for every $x \in X$ there exists an open subset U of X with $x \in U$ for which U is *evenly covered* by c, that is, $c^{-1}(U)$ is a disjoint union of open subsets of \widetilde{X} each of which is mapped homeomorphically onto U by c. When \widetilde{X} is simply connected, c is called universal covering and it is called categorical universal covering if for every covering map $q : \widetilde{Y} \longrightarrow X$ with a path connected total space \widetilde{Y} , there exists a covering map $f : \widetilde{X} \longrightarrow \widetilde{Y}$ such that $q \circ f = c$.

In this note, we consider the following commutative diagram:

$$\begin{array}{ccc} c^*E \xrightarrow{p_2} E \\ p_1 & & \downarrow f \\ \widetilde{X} \xrightarrow{c} X, \end{array}$$

where c is covering map, f is fibration and p_1 is pullback fibration of f by c.

It is well-known that p_1 is a fibration [4, page 98]. Here we prove that if c is a covering map, then p_2 is also a covering map and hence we have a diagram such that vertical maps are fibration and horizontal maps are covering map. Next, we show that if c is universal covering map, p_2 is not necessarily universal unless f has unique path lifting property.

^{*}Speaker