$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

Multilinear mappings on matrix algebras

Mahdi Dehghani*
University of Kashan

Mohsen Kian
University of Bojnord

Abstract

We investigate the notion of positive multilinear mappings on matrix algebras. Some matrix inequalities including positive multilinear mappings are introduced.

Keywords: positive multilinear mapping, Jensen inequality, positive matrix, matrix convex function
Mathematics Subject Classification [2010]: Primary 15A69; Secondary 47A63,47A64, 47A56.

1 Introduction

Let $\mathcal{M}_{n}:=\mathcal{M}_{n}(\mathbb{C})$ be the C^{*}-algebra of all $n \times n$ complex matrices with identity matrix I. A linear map $\Phi: \mathcal{M}_{q} \rightarrow \mathcal{M}_{p}$ is called positive if $\Phi(A) \geq 0$ in \mathcal{M}_{p}, whenever $A \geq 0$ in \mathcal{M}_{q}. Positive linear mapppings on C^{*}-algebras and their related operator inequalities are well-known and have been studied by many mathematicians; see e.g., $[1,2,4]$ and the references therein. Positive linear mappings have been used to characterize matrix convex functions. A continuous real function $f: J \rightarrow \mathbb{R}$ is said to be matrix convex if $f(\lambda A+(1-\lambda) B) \leq \lambda f(A)+(1-\lambda) f(B)$ for all $\lambda \in[0,1]$ and all hermitian matrices A, B with eigenvalues in J. It is well-known that a continuous real function $f: J \rightarrow \mathbb{R}$ is matrix convex if and only if

$$
\begin{equation*}
f(\Phi(A)) \leq \Phi(f(A)) \tag{1}
\end{equation*}
$$

for every unital positive linear mapping Φ and every hermitian matrix A with spectrum in J. The inequality (1) is known as the Choi-Davis-Jensen inequality, see [2, 4].

The notion of positive linear mappings is introduced also for maps of several variables. Let $\mathcal{A}_{k}, k=1, \cdots, n$ and \mathcal{B}, be C^{*}-algebras. A map $\Phi: \mathcal{A}_{1} \times \cdots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ is called to be positive multilinear if, it is linear in each of its variable and for every positive elements $a_{k} \in \mathcal{A}_{k}, k=1, \cdots, n, \Phi\left(a_{1}, \cdots, a_{n}\right)$ is positive in $\mathcal{B}[5]$.

It is known that if A and B are positive matrices, then so is their Hadamard (Schur) product, $A \circ B$. The same is true for tensor product, $A \otimes B$. Moreover, the mapping $(A, B) \rightarrow A \otimes B$ is also linear in each of its variables. So if we define $\Phi: \mathcal{M}_{q}^{2} \rightarrow \mathcal{M}_{p}$ by $\Phi(A, B)=A \otimes B$, then Φ is multilinear and positive in the sense that $\Phi(A, B)$ is positive, whenever A, B are positive.

[^0]
[^0]: *Speaker

